The Canonical Csound Reference
Manual

Version 5.06

Barry Vercoe, MIT Media Lab
Other Contributors
Edited by John ffitch, Jean Piché, Peter Nix, Richard Boulanger, Rasmus
Ekman, David Boothe, Kevin Conder, Steven Yi, Michael Gogins, and
Andrés Cabrera

The Canonical Csound Reference Manual: Version 5.06

by Barry Vercoe, Other Contributors , John ffitch, Jean Piché, Peter Nix, Richard Boulanger, Rasmus
Ekman, David Boothe, Kevin Conder, Steven Yi, Michagl Gogins, and Andrés Cabrera

Copyright © 1986, 1992 Massachusetts I nstitute of Technology

Table of Contents

PrE aCE ..o XXViii
Prefacetothe Csound Manualooouiiiiiiiiiii e XXVili
ACKNOWIEAGEMENTS ...t e e ees XXiX
History of the Canonical Csound Reference Manualcoociviiiiiiiiii e, XXX
10070}/ 1T |01 01\~ T XXX
Getting Started With CSOUNGcovvniiiiice e e XXXI
What's new in CsoUNA 5.06uiiiniiiiiie e e s XXXiii

@Y= V= TP 35
1o (8 o 1 o o P 38
Recent DEVEIOPMENLScviiiiii e e 39

Features Of CSOUNO Sovuiiii e e e 39
Features Of CSOUNAV STiiieii e e e e e 40

The Csound COMIMANGoiuiiiiii e e e e e e e eans 42
Order Of PreCeOENCE . .ouiiiniiii e 42
Description of the command SYNtaXcceuviieiiiiiiiiiiee e 42
Command-line Flags (Alphabetically)coooviiiiiii e, 43
Command-line Flags (BY Category)ooveuiieiiiiii i 51
Csound Environment VariableScouuiiviiiiiiici e e e 60
Unified File Format for Orchestras and SCOMESoevvviiniiiiiiiieiieieeeeeeinans 63
DESCIIPLION ..ttt e e 63

EXAMPIE .o 64

Command Line Parameter File (.cSouNdrC)oevviviiiiiiii e 65
SCOrE FilE PrePprOCESSING . .cvvuiiiii et e e e et e e e e e e e e e e anaas 65

The EXtract FEAtUrecvvvniiei e e 65
Independent Pre-Processing With SCSOrtovevviiiiiiiiiiinieiiieeccii, 66

USING CSOUNG ...ttt ettt ettt e e et e e e e et e e e e et e e e eebaaeeees 67
HOW CSOUNAS WOTKSceeiiii e e e aas 67
Amplitude values in CSoUNoveniiiiie e 68
REA-TIMEAUAIO ...ieiiii e e e e 69
ReAtiME 1/O ON LINUX .evuiiiiicii e e e e e e e e 70

WINGOWS oot e e eans 75

VLB ittt ettt e e a e e aa e aaa 76

Optimizing AUiO /O LAENCY ...nieniiiiieeei e 76

Lo 011101 1 1 s [78
Syntax of the OrChESIIaovii e 79
OrchestraHeader StatemeNtScc.uvivveiiiei e e e e e 80
Instrument and Opcode BIOCK StAEMENESoveveiiiiieiiiee e 80
Ordinary SEALEMENESuuueeeiiie ettt ettt e e e e eeaens 81
Constantsand VariableScouiiniiiiiii 81
Variable INitializationccooooniiiiii e 82

(0155 o 82
DirectorieSand FilES .. ccvuiiii i 83
NOMENCIALUIE ... e e e e 83
= 0 PPt 84
Named INSEIUMENLSouiiiie e e e e e e e eanaas 84

User Defined Opcodes (UDQO)coviiiiiii i e e e e 87

The Standard NUMEIC SCOMEiiuiiiiii i e e e e e e e e eaes 88
Preprocessing of Standard SCOMEScvvvviiiiiiiii i e 88
GBI Y et 88

TEOIMPO et 88

S0 PP 88

SOOI S OIS ..ttt e e e 89
Next-P and Previous-P SymbolScccuiiiiiiiiii e 89

The Canonical Csound Reference Manual

L 1110 1o 90
SCOME IMBCIOS ..ceeeiii ettt ettt ettt e e et et e e eenes 91
MUIIPIE FIlE SCOME ... 93
Evaluation Of EXPreESSIONScccuuuiiiiiiiieeiiii ettt e 9

001 =10 To PP UPTRPTRN 96
(025 o 10010 |V A L PP 96

I 1= o 1 0o PR 101
The Tl interpreter: CSECISN ...ovvniiii e 101
Csawish: thewindowing Shell ... 101

A CSOUNG SEIVEE .o e e et e e e et e e et e e e e eeanes 102

A Scripting ENVIFONMENEiieiii e 103
TclCsound as alanguage WIaPPENoceuueeeieiiiie e 104
TclCsound Command REFEMENCEviviiiiiiiiii e 104

2 T0TH o [T 0T XS0 1N o 107
L02STo 1 g To I 012 110
[1. OPCOUES OVEIVIEW ...ttt ettt e et e et e e et e e e e e e eeea s 111
o]t €T o1 = (o (= PP PT 115
Additive SynthesSig/RESYNtNESISuviiii e 115
BaSiC OSCHIALOIS ...cevvviieeeiiie e 115
Dynamic Spectrum OSCHIGOIScvvuieei e e e e 115

FIM SYNENESIS .o 116
Granular SYNENESIScoeiiieii e 116
Hyper Vectorial SynthesiSc..iiiiiiii e 117
Linear and Exponential GENEratorsc.veeeueieuiiiiieeieeeie e eeis 117
ENVEIOPE GENEIAONS ... cvviieiii i eei et e e e e e e e e e e aaeees 118
Modelsand EMUIBLIONSvoiiiuiieiiiiie e 118
S0 £ 119
RaNdom (NOISE) GENEFBIOISccvuneeiiiiieee ettt 119
SaMPle Playbackoounie 120
SOUNAFONES ...t e e 121

oz 0 01C0 IS 0111 122
TADIE ACCESS ..ttt 124
Wave Terrain SYNthESISuiiii e 124
Waveguide Physical MOEIINGvviiiiiiiii e 124
Signal INPUL aNd OULPULuieeeii e e e eeeas 126
File INpUE @aNd OULPULieeei e e e 126
S0 7= o1 126
S0 7= 11 1oL | 126
SOfTWAIE BUS ...ttt et e e e e e e e e e e e e e eeees 127
Printing and DiSPlaycccevuuiiiiiiiiee e 127
SOUN FilE QUENIES ... e e e e e e eaas 127
SIgNal MOQITIEIS ...oeeiiii e e e 129
Amplitude Modifiers and DynamiC ProCESSING «.....uevvrerrniereierriieeriieranaeeannns 129
Convolution and MOFPhINGc.eeeeiiiiiee e e e e 129
DAY et 129
Panning and SpatialiZationccoouiiiiiiiiiie e 130
REVEIDEIAION ...oeeiieee e e 131
SaMPlE LEVEl OPEIAOrS .. c.uuiiii it 132

S 7= I T 11 (= 132
SPECIAl EffECLS .vuiiii e 133
StaNdard FIITErS ..o 133
SPECIAliZEA FIITErS ... 134
WAVEGUIAESeiieie et e e ea s 135
Comparators and ACCUMUIALONScvuuniiiiiiiie e 135
INSEIUMENE CONEFOL ...ttt e et e e e e e s 136
ClOCK CONLIOL ...t eeeaa e eees 136
ConditioNal VAIUESceeeeeeei et eees 136
Duration Control StateMENtScc.uiieiiiiiieii e e 136

The Canonical Csound Reference Manual

FLTK Widgets and GUI cONtrollersccuviiiiieiiiiiii e eeie 136
FLTK CONAINEIS «.ieitieeeeiie ettt e e 139

L I QY U - (o 3 139

Other FLTK WIAGELS ...oevvvieiiiiiieeeie et e et e e e e e 140

Modifying FLTK Widget APpearanCeoceeuiieuieeiiieeiieeeieeeieeee 140

General FLTK Widget-related Opcodesccuuviiiiiiiiiiiieieieeieeeeennn 141

INSErUMENE INVOCEEIONiiiiiiie e e s 141
Program FIOW COntrolooieeiiiiiiee e e e e e e e e 142
Real-time Performance CONtroloviieiiiiiiieeir e 143
Initidization and REINItializationc.uiiiiiiiiiiii e, 143
Sensing and CONLIOLiieiii e e 143
LB S ettt aes 145
SUb-INSrUMENt CONEIOLiiiii e 145

LI 0= = [1 145
Function Table COoNrolooieieii e e e 147
TabI@ QUETTES ...t e 147
Read/WIIte OPEralioNSccvuiiii ettt eea s 147
Table Reading with Dynamic SEleCtionccoceviiiiiiiiiiiii e 148
MathematiCal OPEIaLiONSceuueiiiieeie e e e e e e e e e eaeaas 149
AMPlItude CONVEITENSovviiiei e e e e e e e ans 149
Arithmetic and LOgiC OPEratioNSuuuiiiiiiiiiii e 149
Mathematical FUNCLIONSoouuiiiiiie e 149
Opcode Equivalents of FUNCHIONSooveuiiiiiiiiiiieiiee e 149
RaNdOmM FUNCLIONSoieiiii et 150
TrigoNOMELIIC FUNCLIONSucvviiiiii e e e e 150

PIECN CONVEITEIS .. 151
0o 0 151
TUNING OPCOOES ...ttt ettt ettt e e e e eaens 151
REal-tiME MIDI SUPPOIT ...vvuieeiiiie e e e e et e e e e e et e e e eae e e e eaen s 152
Virtual MIDI Keyboardoooniiiii e 153
T T o U | PSP 155

MIDI MESSAJE OULPUL ..uveneeeeieei e e e e e e e e e e e e e e et e e e e e e eaeenns 155
Generic INPUE 8N OULPULoovuneiiiiiee e 156
10001017/ ¢ (= £ TP 156
EVENE EXEENTEIS ... ettt ettt e e e e ea s 156
Note-0n/NOte-Off OQULPULieeeiiiiiee e 156
MIDI/Score Interoperability OPCOUESvvvuiiiiiieiiiciie e 157
System Realtime MESSAGESvvvniiiiieii e e et e e e e e e 158

S [1= g S =0 158
SPECLIAl PIrOCESSING ... ceeetiieeeeii ettt ettt ettt e et e e et e e e e e e e 160
Short-time Fourier Transform (STFT) Resynthesiscccooeeiiviiiiiiieinneen, 160
Linear Predictive Coding (LPC) Resynthesisccocoveviiiiiiiii e, 160
Non-standard Spectral ProCESSINGovvvuieiiiieiiiieiiieein e e e e e e e e 161
Tools for Real-time Spectral Processing (PvS 0pcodes)ccvvevenvevinierennernnnn. 161

ATS SPECHral PrOCESSING ..cevvuiiiiiiiie ettt 162

L OIS OPCOUES ... ettt ettt e e e e 163

S] SR PT 167
String Manipulation OPCOOESceuiiiiiiiiee e 168
String CoNVErSiON OPCOEScevuniieiieiiiie e ee e e e e e e e e e e eeees 168
VA= e (= @ oo o L= 170
Tables Of VECIOrS OPEIaIONSiieeiiieeiiii e 170
Operations Between a Vectorial and aScalar Signalccoevvveiiiiiiieiiiinnenens 170
Operations Between two Vectorial Signalsooceveveiiiiiiiiiiiiiee e 171
Vectorial ENVElOPE GENEIatOrSc.uiieuiiiiiiiieee e 172
Limiting and wrapping of vectorial control Signalscccooeveveviiiiiiieeinnns 172
Vectorial Control-rate Delay Pathscccoeviiiiiiiiiii e, 172
Vectorial Random Signal GENEIatorscoevuuiviiiiiieiiiii e 172

W (o RS Y £S (o [R 174

Vi

The Canonical Csound Reference Manual

L T o T 01 175
DSSl and LADSPA fOr CSOUNGciviiiieeiiiiieeecei e 175

Y I 0] B2 ¥ 1 o 175

(01 O g Lo [N\ = 1Yo PPN 177
L S PSPPI 177
NEEWOIK .. et e e e e e 177

R 11101 (=T @) o0 o L=< 177

Y DS @] o oo o === 178
PYINON OPCOOES ... et 179
(oo (8 o o o PP 179
OFCNESLIA SYNEAX ...ttt e e e e eees 179
MiSCEIlaNEOUS OPCOESccviiieei e e 181
B = = = 0ot PP 182
Orchestra Opcodes and OPEIaLOrSccuueerneeiireeieeeei e e e e e e e e e e e e eannas 203
LSS 204
BOEfINE L 206
FANCIUAE ..o e 210
BUNGET s 212
FTAEE 213

BT NOEE 215

BN AME .o 216
PP 219
PP 221
DS UPPRTPN 222
DU UPPRTSPN 224
DSOS 226

= TP UPPRTPRPN 228
S P 230
PSPPSR 232
TSP 234

L e 236
USRS PPTPRTRPPPR 238
PSPPSR 240
AP 242
(0 o 244
.. 245

00D ettt e ae 247
PP 250

| e ettt 251
TSP 252

2 P 253

= PP 254
BDELAIANG ...t e 256
BDEXPINA .o 257

A0S 258
BCALICHY ... e 260
BOLIV <t 261

=0 LS S P TSUP TP PTUPPRPP 264
=015V 267
015 | 269
BOSYNEZ e e 272
BEXPIANG ..ttt 274
AFEOUCKH ..o 275
BUJALISS L.ttt 277

=T (00 0] o1 278
BlINTANG ... e 279

Bl PSS . e 280
BIMPAD e e 283

Vii

The Canonical Csound Reference Manual

AMPADTS L. 285
0] o] 011 287
BPCALUCKY .. 289
BIDOISSON ...ttt ettt ettt ettt e e e e et e e e ee e aee 290
=100 1 TP 291
S (=== o | PP 292
o TS 0] G 294
= (0] = 295
= (0] 1< QTP 297
= 0] < G 298
= 1 =)o [T 299
N IS = (o [300
AN IS = [0 N 302
F LIS 01U =" N 304
AN S (01N 306
F N S 1 11 {0 T 308
ATSINEEIPrEAA ...eeeeee et e e e e e e eanas 310
F N IS == o [311
F N IS (== o [N 313
ATSPAIEITAD ..neeveeeeie e 315
PN S S 1 Lo T 317
=10 1] = 1o T 319
F= V= 1o 10 || T 320
072 oo TN 321
DAL ANCE . eiieiei e 325
DAMDO0O ..o 327
DAIMIOTE] . o.eeee e s 329
o] o101 11 1 1 331
o] o101 | = 336
DELArANG .. oooeei e 338
DEXPINA ..o 340
o]0 1.0 012N 342
o] 6] 1116 [o 344
o1 T AT 346
DIUAT ..o e 347
DIQUATA ... e 351
o] 1 S 352
BOMEZ e 354
BULDD e 357
01111 o) 358
UL e 359
UL D e 360
010111 o] o 361
010 |1 =: 1 o] (N 363
BULLEIND e e 365
BULLEN TP e e 367
01011 () I 369
DUZZ e 370
(0= 7= < 372
o 1 Y 374
(o<1 IR 376
07 11 377
(000 0 (o TP 379
(02 7= 1 o 381
ChaNQE ... oo 382
(02 170 384
(01 1710 [0 J TP 385
(01 1170t (010)T 386

The Canonical Csound Reference Manual

0 00 U UPPRTSPN 388
CHNCIEAN ... e 390
ChNEXPOIT .. et e 391
CHNGEL .. et 393
CRINMIX <o e ees 395
ChNPANEMS ..o e 396
CINSEL et e 397
o100 o 399
(610 (o (o TR USRI 401
(o[T 403
o PSPPSR 404
[0l 1 o PP 407
ClOCK ettt 410
ClOCKOF e e 411
ClOCKON et e 412
(0230 0 (o TP 413
[0:0]10] o PP 415
(00] 0 010 1= ST 418
(070011 o PSPPI 420
(000 01V] = USRS 421
CONVOIVE L.t eaas 422
00 PPt 425
o101 o PSPPSR 427
(00 1S 10 | PO UPPTP 429
ot 015724 oo . T 431
ot 01 211 435
CPSMIAID . e 437
(610 o PP 439
(0001 oo [P 441
(01015110 1T PP 443
o o1 [0 446
ot 011 449
CPSXPCI Lo 452
(01 010 o) (o2 PP 456
(08 1015557 PP 458
CIUNCH <ot ees 460
1 USSP 462
o 1 220 USRS 464
Ol e 466
(ox 11 11 0T 468
(o0 < 1 oo [P 469
0= 0 PSPPI 471
aEE ..t e 474
GAEES ..ot e 476
0 PSPPSR 478
(0] 7= 111 o I TP PP TUPPPTPRPPPIN 480
005 1]« PSPPSR 482
ACDIOCK ...t 484
0o 0 1Y UPPRTPN 486
01 488
EIAYL oo e 490
EIAYK v e 491
(01 Y PSPPSR 493
JE YW e 494
(01 !0 T 496
EltADS oo e 498
(01 1 1o PSPPSR 500
EITADN oo 502

The Canonical Csound Reference Manual

(01 =10)G 504
(0151 =10)1, 506
01 7o g o 508
0 PSPPI 509
(0115 1o =1 o PP 511
(01 ES 1 o [UPPRTN 514
GISKINZ e e e 517
0TS 1 520
(01 ES o] = YOO TUPPRTTRPPN 522
0T (o o A 524
(01 o) o 1 PSPPSR 526
IV Z e 528
0 (01115 o 530
(0T oY (= 532
(0SS Tz o V7= = 534
(0SS Tz 1 o Lo P 535
(0155 Tt £ PSPPSR 536
(0SS o PP 537
[0 1SS] USSP 539
011 0T o] 540
UMPK2 o e e 542
UMPKS e e 544
AUMIPKA .ottt e et e e e e et eeaa e ees 546
(01U 11 0o PP 548
Bl OB i e 550
Bl BT e 551
BNAIT e 552
< 0701 o 553
< 070 (o] o J PP 555
< 01771 o) G PP 556
< 017710 559
<o |11 USRS 561
LY | PP RPN 563
LS YL 0| P 566
EXITNMOWY .ttt et e et et et et e e et e e e et e eaa e eeas 567
L2 o TP 568
L2 0oL < 570
24 00 0 572
EXPIANG ..ttt a e 574
LS 02 <o PP 576
S0 <o - LT 578
L0 <o | TP 580
1 o= PP 583
FHLRION e 585
FHENCHNIS .. e 587
FHEPEBK .. 589
111 1= PP 591
1= 22 PP 593
10 TSP 595
1 PP 597
L] 599
111! o= o PP PUPPPTRUPPPT 600
L2 L= ST 602
FLASNEXE e 604
FLBIOX et 606
FLBUEBANK ...eeieeieei e 611
I T 1 614
FLCIOSEBULION ...ttt ettt e e e e e e e 619

The Canonical Csound Reference Manual

FLCOIOF ettt 622
FLCOIOIZ et 624
o | 625
[= (= o = 11 o | PN 628
FLGEISNAD ..ttt et e e 631
[o o U o RPN 632
L I 010 o = o P 634
L I 0110 = o 635
FLRIAE ooveieei e 636
FLRVSBOX . cviiiiic e 637
FLAVSBOXSEIVAIUE ...uiiiiiiiiceeie e e s 638
L Oy ettt 639
L IV o PP 642
FLKNOD et 644
FLIADED et 649
FLIOBOSNED ...eeveeiiei e 651
FLIMOUSE ...ttt ettt ettt et et et e e e e e e eans 652
L1000 = PP 654
L1100 0= 2 656
1 PP 658
FLPBCK et 659
FLPACKENG ... 662
FLPACK BN ..o e 663
FLPNEL <.t 664
L I 7= 11 1= o P 667
L I 7= 11 = 0 668
FLPIINTK oot 669
FLPIINTKZ Lot 670
L]| = R UPTRPPRN 671
L TUN e 674
L IS - 7= 675
FLSCIOI e 680
FLSCIOIENG .. oeeeeiei e 683
FLSCIOI_@N ...t et 684
I 7Y 1o o PSP 685
I 120 ST P 687
I (0o o PSP 689
FLSEICOIOIZ ..ottt 691
FLSEIFONE ...oeeie e 692
FLSEIPOSITION .vviiiiiiiii e e e e e et e e 694
FLSEISIZE .o iiiiii et 695
FLSEISNAD ..ottt 696
L IS S =T o L] 0T o 698
I = PSP 699
FLSETEXICOION ..ouiiiiiii e e e e eaas 701
[IS =S = 702
FLSEITEXITYPE ©eueeieiii ettt e e e e e e e e e et e e e e et eeeeran s 703
FLSEEV A i oeeeiti e 706
FLSEIV @ ot 707
FLSNMOW ettt e 708
FLSIABINK ...ttt e e e e e e e e e 709
FLSIHABNKZcoveieceei et e e e e e e e e et e e e e aa s 713
FLSIABNKGEIHANAIEcvvvieeiii e 716
FLSIHABNKSELiiiiiiiee ettt e e e et e e e e 717
FLSIABNKSELKoiieiiieeeii e e 718
FLSIABNK2SELceiiiiieeiiiie et e e 720
FLSIABNK2SELKcvviieiiiiiie e 721
I o L= PSPPI 724

Xi

The Canonical Csound Reference Manual

[I 710 1= 730
FLEADSENG ...oveieiiieeiee e 735
FLEADS BN ..t 736
[I (= SRR 737
FLUPAELE ...ttt et et e et e e e e ean s 740
LU LoV O T | TR 741
i 0o [T 744
L 101 (O X 745
L 10 TL0 (@] 11 (o] 746
FIUIAENGING ...t eneas 747
L LU0 T="o IR 751
L 10 T0 |\ o] = 753
L LU o (@ T T 755
fIUIAProgramSEIECtv i 757
FLVAIUB ... et e e aas 759
FLVKEYDA .. 762
[IS (o] =] o TR 763
[IV [0] o e 767
T T o PP 769
1101010 2C J 772
TR L e 775
110010100 =) 778
TNPErCE e 781
L0011 L= 784
1001770 o 787
L0 0070701 = 789
L0) 792
O 2 e s 795
L0 11 1C=: S 801
0o P 803
0] o X 805
L0 0. 807
L0 L1 0 7Y 22N 809
10 = o7 1 811
101 o | | PR 813
01 | TR 815
01 |1 T 819
101111 821
L0 LU 11 G 823
FPITNEKS e e e 825
L1011 0L TP 831
L= N 833
FEEBVEID e s 835
L0210 = 837
L1701 V2P 839
1L (=T 842
L0 (= PP PT 843
L0 (= 01110] o TP 846
i1 = 1T 847
i1 0 = 849
T OBOK .o 850
110 oL £ PP U PPTRPPPPT 851
11101070 L 853
LILES = LY/ 855
LISz L= G 857
1L 858
0= T o OO UPPPTTRPPPIN 860
072 05 1o L= TP TP TPPPRTPRPPPIN 861

Xii

The Canonical Csound Reference Manual

0T 15\ 863
0] 010 .72 865
0= (o {0 OO TUPPRTTRPPPN 867
GOGODED .o e 868
(00 [0 T PP 870
0= 872
01 122 874
0T 879
OrANUIE .ottt e 884
01811 (o TP P PP TPPPRTPRPPPIN 887
NAIMION e 889
NAIMMONZ ... e 892
RITDEIT <. 894
1= 898
NSDOSCI ..vnieiie e 900
VS e 903
PV S e 907
0175 PSP 910
ettt et e e e e e e e e a e e e et an e et r e e ennn 913
] 0 - o 914
TDEXPINA ... 915
TCBLICHY e 916
ot 1 917
ot 2 918
o P 919
=22 0 =1 920
ET e e e 921
7= 11T TP 925
oo (o RPN 926
TNOI <. 928
INrANd oee e 930
0o ot 931
191 To (12220 RO RTPP 932
19T (1o} 933
P 934
101722 SPPT 935
o o 936
3] 937
] L PSP 938
] T (ot P 939
1 (o722 PSP 940
o 941
o PP 942
T 943
o U 944
D1 ettt 945
LTS = 2.2) 946
1S o] | 948
S 10 1= 949
S0 1= 950
IS | TP 951
PP 954
1= o TR PP 956
1= 1 o TP 958
01772 10T 961
D 962
72 963
o i 964

The Canonical Csound Reference Manual

............................. 965
O o
JONAUT - o
JONAUIZ oo o
JOULBE oo o
OUIC e o
JOUICTA oo o9
JOUIPEL oo o
JOUIPD oo o
JOUIIC oo o
IPOALCHY ccresersvssrs st o
JPOISSOM 1o o
T ore
e o
ISBA0T ot o
SO0 o o
2 v o
ISHBIBA o o
(SN oo o
BIBOODY oo o
AN oo o
HADIEIMIX oo o
e o
AN o ol
UL oo —
AEIDUIL oo o
Y et o
JIIRIZ oo mvs s oo
Jsplme o
B o
KOOATAIL. oo o
KDEXPIIEL wovcrsers s o
KCBUCIY oo o
LM e Lo
KELMIZ coscrser e 1000
KELMIPR wesvvssers s s s s -
KELTIE cesrssnns s s o
B 1008
KIMEIZ oo o
KELISS oo o
KOOID oo o
KIMNC oo 1008
T 0
KOULAL oo o0
KOULE v e
KOUICLL oo o
KOUIDEE oo o
KOUIPE) corsrssans s s o
KOUIPIG ovserssnns s s o
KPCBUY covsersvs s e
KPOISSON ..o o
KPOW vvesvsors s s
B o
B 100
KB oo o
KIA3 oo 102
IOBHE oo 1028
KEITIDS oo 10
KEahlESEYceeeeieeeie e

Xiv

The Canonical Csound Reference Manual

1= 0 o PSP 1026
KUNITANA ..o 1027
KWEIBUIL ... e 1028
o S 1029
T 0 0] 1031
1] L= ST RPN 1032
1T 07 o PSP 1034
1] 07 o | PSPPSR 1035
1] 1= (o T PSPPI 1037
1T 9= Lo TP 1038
1 0= s TP 1040
T 1S | 1043
[OCSENA et 1046
oo 1048
[T PSP UPPRT 1051
T 1 0 T 1053
FeTe o111 TP 1055
o0 Tt = 1057
oo o T o 1= 1059
oo o T o | 1060
LOOP L e 1061
LOOP It e 1062
[ole] 0= "= o RPN 1063
[ole] o< = o o IR PT PR 1065
=2 .2 ST 1066
TOFTSIEAA ...t 1069
[OFTSIMONPR . 1071
[OTTSPIAY ..ot 1072
oS o | TP 1073
LOSCIIS e 1076
107 o] PSP 1079
0 0= 1080
Lo (=PSRRI 1082
Lo == PP 1084
o)1 TP 1086
[PEFESON .. 1088
0] 7= o 1089
o011 o T 1091
[POSCIL <.t 1092
[POSCIIB e 1093
[POSCHA .. e 1094
[POSCHISA ...t 1095
0 T0 1S 1= 2 1096
0] == 1097
Fel =o)L PSPPSR 1099
[PSNOI .. 1100
[PSNOIAD e e 1102
01 Lo TSP 1103
0= oS T TP PPN 1105
107207 PP PP PP 1106
11T 0 S PSPPI 1107
MANAED ..o e 1110
MBNAOL ... e 1111
MBINTMDA ... e 1113
0= S o o 1116
0= PP PPT 1118
11T o T PSPPI 1119
QTG 01 oo o TP 1120

XV

The Canonical Csound Reference Manual

072 €= @ | 0 TN 1121
MAXAIOC . ieieii i e 1122
INIBX K et 1124
01000 T - 1125
1070 1= Y PR 1126
7= 1 T 1128
01T [ot 1130
01T o2 1132
0010 1 o 2P 1134
MidichanNEI G TEITOUCH ... e 1136
0010 [Tt o] o 1138
MIdICONIOICNANGE ieei e e 1141
01T [o1 1 1143
01T [0 U= it= 1 1144
0010 1T o TR 1145
00110 1 2101 = o) i A 1148
MITINOLEOMNCPS ...t et ettt e et e e e e e et e e et e et e e at e e ea e eannas 1150
MIGINOLEONKEY .. .eeiee et e e e e e e e e et e eaeeens 1152
0017 [0] (=0T o: 1154
0T [T 0] =101 o o [1156
(0010 [T o] o P 1158
00110 [T o] V- 1161
0010 0 | 1162
MIdIPITCNDENGeee e 1164
MIdiPOlYaftertoUChccveii e 1166
MIdiPrOgramCNANGE ... cvve e e e e e e e e 1168
MIAITEMPO et e e 1169
00110 (=1 210) S 1170
MIAGIODEL ... 1173
1211 1174
01T T=! o 1175
QLT =01 ot U o o T 1176
001 gT="olet U 0 1177
0 0T () S 1178
MIXEISEILEVEL ..o et e e e e e 1179
MIXEIGEILEVELeiieiieiie e e e e 1181
Y DD 2 < 1 1182
Y DS g R (S = A= 1184
YLD (O == P 1186
0101070 [T 1187
01000] 8T (o) 1190
700 PR 1191
000 =T (o[1193
107070 1Yo 1195
MOOGVCT2 ..t 1197
010101 o | 1199
IMIPUISE ettt et aa s 1201
011 01 o PP 1203
010 =T o 1204
001N 1205
007G 0 = (P 1207
1 0] 0 = 1209
(0SS 1= 0T o P 1210
0] 1 TR 1213
10 1215
10 =: o 1218
0] 0] 1 T 1219
1011050 10 1 | 1220

XVi

The Canonical Csound Reference Manual

(§10)= 000 1 2 1222
110111010 o S 1224
L TE=YL= 1 o P 1226
0110 1 PP 1229
0572 10 oo TP 1230
0551010 T 1232
111 0o 1233
00 7= Y= 1234
0o {07 1 PP 1236
oot 10 o R 1238
oot 0[] o 1A 1240
(0 oi1 oo [PPSR UPPRPIN 1242
(o]0 0 /= 1244
(@ 15T <o o 1249
(15O 11 SRR 1251
(SO 11 1< I TP 1252
(07 o1 o) | 1256
(07 o | 1261
(0= o | 1 1263
(0= o1 1 1 1264
(01 o1 1 1P 1265
(07 o1 | 1267
(07 o7 1 11 1269
OSCHTKED et et 1271
(01 o | 12 1273
(0= o | 1 X, 1275
(61 o1 1 £ 1276
(01 o1 1 D 1278
(o1 | TP 1279
(0111 1C 72T 1280
o (o 1281
(011 (o o 1282
(o111 o P 1283
(011 11 = PP 1284
(o U o 1285
(o 1111 o 2 T 1286
(o110 1288
(o111 o 1289
OULTIIC ettt ettt e et e e et ettt e et 1290
(o111 €= 1291
[0 11 (o 1292
(o011 o3 T 1293
(011140 | 1294
01114 o] 1295
(01011 o o PRSPPI 1296
(011 1o PP 1299
(011 |0 TP 1300
(011 |0) TP 1301
01 0)2 1302
010 1303
011 {0 PP 1304
011 1o PP 1305
[0 0| P 1306
[0 0| 5 PP 1307
(01 = 1308
(01012 0T, 1309
(11 | 1310
(011 | 74P 1311

The Canonical Csound Reference Manual

o TR
D 1312
DE 1314
T 1316
PRI 1319
PEIUKKE 1321
PEITKGIO/E 1328
PORLCTY 1329
PDEND 1331
PTG 1333
PETHGID 1335
PO 1337
POOTMOIVE - 1339
POOUTE 1342
DO 1344
PEEKI 1346
PSSO 1347
PRI 1351
PRS2 1354
DD 1358
DRSO - 1360
PGB 1362
B 1364
D 1367
PCHBITEI 1370
DI 1373
DI v 1375
PSSO - 1378
POIYEI 1382
DO 1384
PO 1386
PO 1387
PO 1388
POl 1390
POSGIR 1392
DO 1394
POWGIWO .- 1396
DIERIOE 1398
PGB0 1400
DL 1403
DT 1405
BT 1406
PR 1408
DTS 1410
DTS 1413
PO 1415
B 1416
PUEEK 1417
PLLS 1419
D 1420
DU 1422
DU 1423
VUG 1426
DUTOSS 1428
VTGP 1430
DO 1432
DUTER 1434
e 1436
.. 1438

The Canonical Csound Reference Manual

(022 o R
DU 1441
DUSCIOSS - 1443
DUSTONEN 1444
DU 1445
DU 1446
DUSIIGR 1448
PSS 1449
DUSIIGBZE 1450
DU 1452
DU 1454
D 1456
DSOS 1458
DU 1459
D 1460
DU 1462
DUSDI 1463
DUSISD 1465
DU 1467
Y00 1470
DU 1472
DUSTEBR - 1474
DU 1476
DUSDEIE 1478
DU 1480
DX 1482
DU - 1484
DU 1486
DY 1488
DUSIBIG 1490
D 1492
DY OPOOUES - 1494
I 1495
YOV OPOGES - 1498
PYOKEE OPEORS - 1499
DYIIE OPOOIS - 1502
DYFUN OPOOGES - 1503
A0 1505
AN 1507
AU 1509
A 1511
OO 1513
OO 1515
P 1517
e —— 1520
K 1522
D 1524
KD 1526
K 1528
B 1530
B 1532
FOMOIEDOIT . 1533
M 1534
FODIUCK 1535
O 1537
O 1539
O 1540
O 1543
... 1544

XixX

The Canonical Csound Reference Manual

[5="0] Y PPPRPPPR 1545
(155 0] AT 1547
1S5/ o PP 1549
(<7< 1 o TP 1551
(V7= 0 V22 1553
(<Y< 0= o 1554
17474 1556
1 0o 1558
1= (00 T 1559
1015 1561
1070 IR TR 1563
1070 1 TR 1565
0011 0 1570
([0 Tox 1571
L] 1 TP 1573
SB2D A ..o 1575
(= orz [P 1577
SAMPNOIA ... e 1579
LSS 110 010 = 1580
LS o7 0] 7= 0011 0. 1582
LS o721 1583
SCANADIE .. e 1585
Lo 1011 IR 1587
[o0 £ 1T (S 1589
S oo (= 11 0= 1590
SCHEAKWINEN ... e 1591
SChEKWNENNAMEAveeeieiei e e e e e eens 1594
LS00 1< o L1 T 1596
[0 0101V, 1< T 1598
L= <10 T 1601
LS <=, (= 1602
LSS0 () 1604
LS 1S 1606
SENSEKEY .ttt 1607
LSS0 1] PP 1611
SEOLIMEZ ..ttt et 1614
L=< o 1 o 1616
LSS 1101 1618
LS = TP 1620
LS T 1S T 1621
LS 1S (T 1623
LS 1S] 1625
LS 10 (1 1627
£ = 1629
SEPBSSIGN et 1630
S A et 1631
Sl Y B e e 1633
Il Y M e 1635
LS 0] = 1Y/ o 1637
S o] 1 1639
S o= = PSP UPPPRTRUPPRN 1640
ST <. 1642
LS TR 1644
£ T 1646
LS T 1 /2 1648
LS 15 0 1650
SEGNDEIS ovveee e 1652
LS [T (< R TP 1654

XX

The Canonical Csound Reference Manual

LS T (= o1) PSPPSR 1656
SHEI B2 o 1658
LS T (= < ¥4 PSPPSR 1660
SIAEIBA .o 1662
LS T (= 7 PSPPSR 1664
LS T (< TSP 1666
LS T (< PSPPSR 1668
SHAErLBLADIE ... 1670
SHAErdBtablEf ...oooveieie e 1672
SHAErB2LADIE ...oiiiiiiee e 1674
SHAErB2tAblEf ..o 1676
SHAErBALADIE ..o 1678
SHAErBAtADIEf ...t 1680
SHAEIBLADIE ... e 1682
SHAEr8LAbIEl ... oo 1684
IS 110 = 4 (= T PP 1686
LS 07 o= o L PP 1687
S 070 oo o R TP PP 1689
LS 010 L1V o 1691
S 10 LT 1 1695
SOCKSENA .eeitii i 1698
SOCKIECV ..t 1700
LS o100 o] o R PP 1702
LS o100 To (011 | PP PP 1705
LS o0 01 (o 11 | (=SSP 1707
S0 oL 1708
0 1o ISR 1712
LS 07z 11 o PSPPSR 1720
LS 7= 11 o | PSPPSR 1724
LS oo = S UPPPRTPPRN 1728
LS00 [0 13 1732
S 0= oo [1733
S0 1< ol [o TP UPPPRTRSPPRN 1734
SPECTIT e e 1735
SPECHISE .t 1736
S 01 o1 PP 1737
S 0= 0 o 1739
S 0705 o 1740
SPECLIUM e 1741
S L TSP UPPPPTRUPPPPN 1743
LS 015 = 0o PRSPPI 1745
S o110 11 PP PP 1748
LS 0101 1749
S| PP 1751
S PPN 1753
S = o PSPPSR 1754
SO OV .t 1755
S) PP 1757
LS 107 PSPPSR 1759
SECNAIK .t 1760
S Y ettt 1761
S (010 TSP UPUPPPPTRUPPRPN 1762
LS | PSPPSRI 1763
SEICAEK e 1764
LS o1] o T 1765
S0 100 1766
S == 1767
S, e 1769

XXi

The Canonical Csound Reference Manual

LS T 10 <2 1770
LS T 0 (=24 1771
L= 1=, TR 1772
LS 1= o 1773
LS L0, 1774
SHTOWETK oo 1775
LS 10T [1776
SITTINAEXK e e aas 1777
LS £ 1778
LS ST | o T 1779
LS ST | o] 1780
£ (0o 1781
L= (oo [1782
LS (o) 1783
LS (0] TP 1784
SITUPPEY et 1785
SETUPPEIK et 1786
£ 0 o0 1787
LS oL 1= 1 T 1790
£ 0 1791
LY 11 (<, TP 1792
Sy 0 ole =] PP UPPPRTRSPPPPN 1795
SYNCIOOP -ttt et 1797
LS L 1 PP 1799
11 o T 1801
1 €=« 1804
16210 (= o 1805
1720 [T TP 1806
16210 [=C TP 1808
TADIECOPY .. eveee e 1809
1= 0] 1= . 1810
16 o) <. 1811
TBDIEICOPY v 1812
(= o= Yo o1 PP UPPPPTRUPPPPN 1813
16210 1= 1 AP 1814
16 o < 11 01D P 1816
162 o) 1< 1LY 1818
1= o) 1< E 1820
16101111001 D TP 1822
BBDIENG e 1824
16 0] 1< 7= R 1826
L6211 15 o 1829
162 o) =1V 1830
162 o =11V 7- 1833
162 o L= 1LY AT 1836
16210 15 AP P 1839
€20 =S o [PPSR 1842
TADMOIPN <. 1843
tADMOIPNA ... 1845
taDMOrPhaK ..o 1847
TBDMOIPNI e 1849
BBOPIAY ..t 1851
1610101010 1 01T 1852
162 I 1854
16118 0 [1856
121107/ 1858
L= 11 17722 1860
11017/ PP 1862

The Canonical Csound Reference Manual

L= 110 1865
L= 1170 1868
TEMPOVEAL ..o 1870
TIOOLO Lot 1872
LS 0 S o [PPSR 1873
LU 1S 1S 1 1875
L0401 1 1877
L0101 G 1879
LU 1005 TP 1881
L] 200010 | T 1883
(A7 TP 1884
L1 o 1885
0] 1= 1886
10011 < 1887
0] 1= G 1888
LU= 010 0] 1 o HU T 1889
EFAOSYN e e 1890
L= 5= PP 1892
L (05 1893
L0 1= 1895
ErNIGNESE . 1897
L] o = TSP PUPTTUPUPPPPTRUPPPPN 1898
LU0 S = o PP 1900
LU= 2o 1902
L0 0TV 1904
L0 11 1905
LGS o [T 1906
115 01 i AP P 1907
LS o] 11 S PP 1908
L0 11 i 1910
L0 1110 2 1912
L0110 o T 1913
00T =1 o [P 1914
01075 0] T TP 1916
5o 1917
VA e 1918
102 (o [1921
L7720 0 1Y 1923
1 o [0V TP 1926
L2 [VPPN 1928
VBIDBSS -ttt et a e aaas 1930
ATz = < 1931
1400 1 1933
VBEPLOMOVE ...eiiiiiiei e e e 1935
1707 o SR 1937
VDBDAMOVE ... 1939
VB8 .. 1941
VDEPBMOVE ..o 1943
VBBPISINIT .o 1945
VBBZ e 1947
VDBDZIMOVE ... 1949
VORI e e 1951
LYo 1954
L7010 1957
LV o 1 i A 1961
(V700 1 i 1963
AV Y2 o 11 TP 1964
AV)1 1| T 1967

The Canonical Csound Reference Manual

0o o 1970
1L oY 1973
VOBIY et 1975
VAEIAY3 . 1977
(VLo L=) PP 1979
(Vo L= = 0 (o [PP UP PP 1981
(0L L= > 1983
[0 1= L 1985
VOBIGYXWQ ettt ettt 1987
VOBIGYXWS ..ttt ettt 1989
VIV et 1991
VIV I e 1994
VABIAYK oot 1996
L= - LY 1997
L= 1998
LTS o L TP 2000
V= (o PP UPT PR PPRPPRPN 2003
VS (oS <o PP UPT PP PPPRPPP 2005
L= 2007
L2220 0.V 2010
VIS e 2012
1 o PP 2014
VIBMAO o 2016
14 o PP PP 2019
VIIMIE L e 2020
L= 2021
L0 = 2023
L0172 VPP 2025
100011 (o PP UPPTPP 2027
VIMUIT et et et et et e et e e e e eeans 2028
18 010 2032
VIMUITY ettt e et e e et e e e et e e e enanas 2034
VMUY T ettt et e eeaanas 2037
{70 ot 2039
(0107 S S o PSP 2042
1V oo PP UP PP PPPRPPP 2044
1771 P 2045
177101 2048
VPOWV ettt et ettt ettt e et et e e e et e e e e 2050
VPOWV T ettt ettt ettt ettt eaan s 2053
VPVOC ..t eee ettt ettt ettt ettt et et e et e et e e ea et e b e et e ea e e e e e ea e eaae 2055
VIANAN Lo e 2057
VEBNAT .t 2060
(VA =100 [Y= 0o [2063
VStDANKIOAA ... 2064
LTS = [PP 2065
125 1 L T 2066
VSEINTO .ot 2067
A2 (01T [T | PR 2068
VSENMOLE ..ttt ettt ettt e 2070
VSEPAramSEL, VSIPAraMOELcuuveeieieee e 2072
LTS 1 0076 VPP 2074
VSUDV ettt et et e et et e e e aans 2075
VSUBY I e 2078
1V = o =1 PP 2080
VEBDLEI e 2082
VEBDIEK .o 2084
VEBDIEA .. 2086

The Canonical Csound Reference Manual

VEBDIEWI et 2088
VEBDIEWK e 2089
VEBDLEWA ...t 2091
1Y o PP 2093
1= o 2095
1Y = o 7= L 2097
VBB e 2099
VEBIWK e 2100
VEBIWE L. 2101
LA = VPP 2102
1T === = S 2103
WEIDUIL L. e e 2105
WODOW Lottt e e e e e e e e e e e 2107
WODOWEADEN ... 2109
(V0] = PP UPPPP 2111
WOCTAD ettt 2113
WOFTULE e e e e aaas 2115
WOPIUCK <. 2117
WOPIUCKZ .. e e e 2120
1T 8 1o L= 2122
WOUIAEZ .ottt e et e eaanns 2124
1= o TP UPTUPRUPRPPRPN 2127
L= 1 T o PSPPSR 2128
D= 0 L S UPPPRSPPR 2130
D (] PP UPPTPPT 2132
D (o | PP UPPTRPPT 2134
DS o= 117 o PP 2136
D o 1 1 0 PP 2137
D o= TP TP TP 2138
b o= 11 PP UP PP 2140
D1 = 112 PSPPSR 2142
D00 2145
ZACl 2147
ZAKINIT L 2149
P21 11010 [P PTUPTRPPRRN 2151
2 | S PSP 2153
. | o 2155
ZAW ettt et et e e e e e e eaa e en 2157
2= 1Y 0 2159
ZE 2 2162
| 2164
41 2166
4111 0 2168
ZKCl e 2170
ZKIMOO ..o 2172
ZKE e 2174
KW e 2176
XL/ 0 2178
Score Statements and GEN ROULINESccuuuiiiiiiiieeiiiie e 2181
SCOME SEALEMENTS ...ttt e e e e e e e ees 2181
a Statement (or Advance SEAateMENL)ccoevvniiiiiiiieee e 2182
D StaEMENT ... 2183
 SHALEIMENT ..t 2184
f Statement (or Function Table Statement)ccoeevviiiiiiiiici e, 2185
i Statement (Instrument or Note Statement)ocovvvveiiiiiiieii e, 2187
m Statement (Mark StAEMENE)covviiiiiee e 2190
TSP 1 1= 0| 2191
O SEALEIMENT ...t 2192

XXV

The Canonical Csound Reference Manual

r Statement (Repeat StatemMENt)ovvviiii e 2193
SSEAEMENT ... 2195
t Statement (TempPo SEALEMENL)ooeveniiiii e 2196
V SEBIEIMENL ...ttt e e ettt e eae 2197
X SEBEMENT ..ottt e 2199
GEN ROULINES ...ttt ettt e ettt e e e e e ennaes 2199
GENOL .ot 2202
GENDZ ... 2205
L0 SRR 2207
GENDZ .o e a e e 2209
GENDS ..t e e a e aaaeaaaaa 2210
GENDBiieiiitiiee ettt ettt ettt 2212
GENOT . 2214
GENDOB ... ittt 2216
GENDD ...t e e et eaaaeanaaa 2218
GENTOD ..ot aaaeaaaaa 2221
GEN L .o ettt a e e e aaaaa 2223
GEN L e 2225
GEN L i 2227
GEN L e 2229
L S USPRP 2232
GENILB ...ttt aaaeaaaaa 2233
GEIN L7 e e 2236
GENLS .ot et 2237
GEN LD . 2238
GEN20 ...t 2240
GEN 2L ..o aaeanaaa 2242
GEN 22 . e 2244
GEN 23 .t e e e e aaaaa 2245
GEN 24 e 2246
GEN S . 2247
GEIN 27 e 2248
GEN28 ...t aeeanaaa 2249
GENSBOD ..ttt e e e e e e aeaaraa 2251
GEIN L .t e e et n e aaaeaaaaa 2252
BEIN S e 2253
GEIN 3 it 2255
GEN B i e 2257
GENAD ..o e e aaeaa 2259
GENAL .o e e 2260
GENA2 e 2261
BN i e 2262
GENDL .o 2263
GENDZ . 2265
The ULty PrOgramsooooeiieiii et 2266
D1 (= w0 1= PP 2266
SOUNTFIIE FOMMELS.ceeeii e e 2266
Analysis File Generation (ATSA, CVANAL, HETRO, LPANAL, PVANAL)
.. 2267

File QUEries (SNDINFO) ...cc.uiiiiiiei e 2278

File Conversion (DNOISE, HET_IMPORT, HET_EXPORT, PVLOOK,
PV_EXPORT, PV_IMPORT, SDIF2AD, SRCONV)cccuvuiiiiiieiiiiinnnans 2280
Other Csound Utilities (CS, CSB64ENC, ENVEXT, EXTRACTOR, MAKEC-

SD, MIXER, SCALE) ..ottt 2295
LOL ol PP 2308
Events, Lists, and OperationSvvveunieiiiieiiieei e e e e e e 2308
Writing @ Cscore Control PrOgramoveeeeuiieeeiieeeeiin e 2311
Compiling @ CSCOre PrOGramccouuuuieeiiiiieeeei ettt 2315

The Canonical Csound Reference Manual

More Advanced EXaMPIEScoeuniiiiiiiiii e 2318

(= 10 [e [2 o o [2320
Adding UNit GENEIaLOrSuuuiiiiiieeeiiie et 2320

Creating aBuiltin Unit GENEratorcoovviieeiiiiiiieiiiieece e 2320

Adding aPlugin Unit GENEratoroveeuuieeiiieiiiieieiieeeie e 2323

OCENTRY REFEIBINCEuiiiieiieie e 2324

AL PITCH CONVEISION ...ttt e e et e e e et e e e ennnas 2327
B. SOUNd INEENSILY VAIUES . .ovviiiiiieei e e e e e e e e e ean s 2331
O o0 7= B =S 2332
D. Modal FreqUuENCY RELTIOSccuuuieiiiiie ettt et e e 2337
E. WINAOW FUNCLIONS ...ttt e e e e e 2339
F. SoUNdFON2 FilE FOIMELoeeneie e 2344
G. Csound Double (64-bit) vs. Float (32-Dit)ccevvieiiieiiiie e 2345
H. QUICK REFEIENCE ..uiiiiiiiiiii et e e e e ens 2346
GlOSSANY ettt 2385

XXVii

Preface

Table of Contents

Preface to the Csound ManUalcoooeeiiiiiiiiiie e XXVili
ACKNOWIEAGEIMENESee ettt e et e e e s XXiX
History of the Canonical Csound Reference Manualcccoivieiiiiniiiiiiineec e XXX
COPYHGNE NOLICE ...ttt et e et e et e e et e e e et eeees XXX
Getting Started With CSOUNGcoeuniiei e e XXX
What's New in CSOUNA 5.06coovrriiiiiieeiiiiiiie e XXXl

Preface to the Csound Manual

Barry Vercoe, MIT MediaLab

Realizing music by digital computer involves synthesizing audio signals with discrete points or samples
representative of continuous waveforms. There are many ways to do this, each affording a different
manner of control. Direct synthesis generates waveforms by sampling a stored function representing a
single cycle; additive synthesis generates the many partials of a complex tone, each with its own loud-
ness envelope; subtractive synthesis begins with a complex tone and filtersit. Non-linear synthesis uses
frequency modulation and waveshaping to give simple signals complex characteristics, while sampling
and storage of a natural sound alows it to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is gained in two
ways: 1) from the instruments in an orchestra, and 2) from the events within a score. An orchestra is
really a computer program that can produce sound, while a score is a body of data which that program
can react to. Whether arise-time characteristic is a fixed constant in an instrument, or a variable of each
note in the score, depends on how the user wants to control it.

The instruments in a Csound orchestra (see Syntax of the Orchestra) are defined in a ssmple syntax that
invokes complex audio processing routines. A score (see The Standard Numeric Score) passed to this or-
chestra contains numerically coded pitch and control information, in standard numeric score format. Al-
though many users are content with this format, higher level score processing languages are often con-
venient.

The programs making up the Csound system have a long history of development, beginning with the
Music 4 program written at Bell Telephone Laboratoriesin the early 1960's by Max Mathews. That initi-
ated the stored table concept and much of the terminology that has since enabled computer music re-
searchers to communicate. Valuable additions were made at Princeton by the late Godfrey Winham in
Music 4B; my own Music 360 (1968) was very indebted to his work. With Music 11 (1973) | took a dif-
ferent tack: the two distinct networks of control and audio signal processing stemmed from my intensive
involvement in the preceding years in hardware synthesizer concepts and design. This division has been
retained in Csound.

Because it iswritten entirely in C, Csound is easily installed on any machine running Unix or C. At MIT
it runs on VAX/DECstations under Ultrix 4.2, on SUNs under OS 4.1, SGI's under 5.0, on IBM PC's un-
der DOS 6.2 and Windows 3.1, and on the Apple Macintosh under ThinkC 5.0. With this single lan-
guage for defining the audio signal processing, and portable audio formats like AIFF and WAV, users
can move easily from machine to machine.

The 1991 version added phase vocoder, FOF, and spectral data types. 1992 saw MIDI converter and
control units, enabling Csound to be run from MIDI score-files and external keyboards. In 1994 the
sound analysis programs (Ipc, pvoc) were integrated into the main load module, enabling all Csound

XXViii

Preface

processing to be run from a single executable, and Cscore could pass scores directly to the orchestra for
iterative performance. The 1995 release introduced an expanded MIDI set with MIDI-based linseg, but-
terworth filters, granular synthesis, and an improved spectral-based pitch tracker. Of special importance
was the addition of run-time event generating tools (Cscore and MIDI) alowing run-time sensing and
response setups that enable interactive composition and experiment. It appeared that real-time software
synthesis was now showing some real promise.

Acknowledgements

In addition to the core code developed by Barry L. Vercoe at M.I.T., alarge part of the Csound code was
modified, developed and extended by an independent group of programmers, composers and scientists.
Copyright to this code is held by the respective authors:

Table 1. Contributors

Mike Berry

Eli Breder
Andrés Cabrera
Michael Casey
Michael Clark
Perry Cook
Sean Costello
Rasmus Ekman
Richard Dobson
Mark Dolson
Dan Ellis

Tom Erbe

John ffitch

Bill Gardner
Michael Gogins
Matt Ingalls
Richard Karpen
Victor Lazzarini

Allan Lee

David Macintyre
Gabriel Maldonado
Max Mathews
Hans Mikelson
Peter Neubécker
Peter Nix

Jean Piché

Ville Pulkki
John Ramsdel |
Marc Resibois

XXiX

Preface

Rob Shaw

Paris Smaragdis
Greg Sullivan
Istvan Varga
Bill Verplank
Robin Whittle
Steven Yi

The official manual was compiled from the canonica Csound Manual sources maintained by John
ffitch, Richard Boulanger, Jean Piché, Peter Nix, and David M. Boothe. The Alternative Csound Refer-
ence Manua was maintained by Kevin Conder. The Canonical Csound Reference Manual is maintained
by the Csound community.

History of the Canonical Csound Reference
Manual

This manual is a product of the Csound community. The current version of the manual is based on the
Alternative Csound Reference Manual, developed by Kevin Conder using DocBook/SGML
[http://www.docbook.org/]. This was in itself based on the Official Csound Reference Manual till loc-

ated at: http: //mww.lakewoodsound.convcsound
[http://www.lakewoodsound.com/csound/hypertext/manual .htm]), which was maintained by David M.
Boothe.

In the winter of 2004, the manua was converted to DocBook/XML by Steven Yi to alow for more
people to be able to compile and maintain the manual. The manual continues to be a community run
project that depends on the contributions of developers and users to help refine the coverage and accur-
acy of its contents. All contributions are welcome and appreciated.

Written by Steven Yi, January 2005.

Copyright Notice

Copyright (c) 1986, 1992 by the Massachusetts I nstitute of Technology. All rights reserved.

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, M.I.T., Cam-
bridge, Massachusetts, with partial support from the System Development Foundation and from Nation-
al Science Foundation Grant # |RI-8704665.

Manual

Copyright (c) 2003 by Kevin Conder for modifications made to the Public Csound Reference Manual.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of this license is
available in the examples sub-directory [examples/fdl.txt] or at: www.gnu.org/licenses/fdl.txt
[http://www.gnu.org/licenses/fdl .txt].

This Csound language documentation in this manual is derived from Kevin Conder's Alternative Csound
Reference Manual, which in turn is derived from the Public Csound Reference Manual.

Copyright 2004-2005 by Michael Gogins for modifications made to the Alternative Csound Reference

XXX

http://www.docbook.org/
http://www.lakewoodsound.com/csound/hypertext/manual.htm
examples/fdl.txt
http://www.gnu.org/licenses/fdl.txt

Preface

Manual.

This legal notice is from the Public Csound Reference Manual: “The original Hypertext Edition of the
MIT Csound Manual was prepared for the World Wide Web by Peter J. Nix of the Department of Music
at the University of Leeds and Jean Piché of the Faculté de musique de I'Université de Montréal. A Print
Edition, in Adobe Acrobat format, was then maintained by David M. Boothe. The editors fully acknow-
ledge the rights of the authors of the original documentation and programs, as set out above, and further
request that this notice appear wherever this material is held.”

The Public Csound Reference Manud's last known network location was ht-
tp://www.lakewoodsound.com/csound/hypertext/manual .htm.

The Alternative Csound Reference Manual's network location, for both the Transparent and Opaque
copies, is http://kevindumpscore.com/downl oad.html#csound-manual .

The Csound and CsoundV ST Manual's network location is http://sourceforge.net/projects/csound.

Csound and CsoundVST

Csound is copyright 1991-2005 by Barry Vercoe and John ffitch.
CsoundV ST is copyright 2001-2005 by Michael Gogins.

Csound and CsoundV ST are free software; you can redistribute them and/or modify them under the
terms of the GNU Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

Csound and CsoundV ST are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY ; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU Lesser Genera Public License for more details.

You should have received a copy of the GNU Lesser Genera Public License along with Csound and
CsoundV ST; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA.

Virtual Synthesis Technology

Virtual Synthesis Technology (VST) Plugin interface technology by Steinberg Soft- und Hardware
GmbH.

CsoundV ST source code contains modified versions of source code files from the VST SDK distributed
by Steinberg. These files are to be used only for building CsoundVST. Y ou are not licensed to use these
files for any other purpose. If you make a derived product based on CsoundV ST or the modified VST
source files herein, you must apply to Steinberg for your own license to use the VST SDK.

Getting Started with Csound

Downloading

In case you don't already have Csound (or have an older version) download the appropriate Csound ver-
son for your plaform from the Sourceforge Csound5 Download Page
[http://sourceforge.net/project/showfiles.php?group id=81968& package id=120482]. Installers for
Windows have ".exe' extension and for Mac '.dmg' or tar.gz'. If the installer's filename ends in '-d' it
means the installer has been built with double precision (64-bit) which provides higher quality output
than the ordinary float precision (32-bit), which provides quicker output. You can also download the
sources and build them, but this requires more expertise (See the section Building Csound).

XXXi

http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://kevindumpscore.com/download.html#csound-manual
http://sourceforge.net/projects/csound
http://sourceforge.net/project/showfiles.php?group_id=81968&package_id=120482

Preface

It's also useful to download the most recent version of this manual, which you will aso find there.

Running

Csound can be run in different ways. Since Csound is a command line program (DOS in Windows
terms), just clicking on the csound executable will have no effect. Csound must be called either from a
terminal (or DOS prompt), or from afront-end. To use Csound from the command line, you must open a
Terminal (DOS prompt on Windows). Using Csound from the command line can be hard if you've never
used the terminal, so you may want to try to use one of the front-ends included with your distribution. A
front-end is agraphical program that assists running Csound and can usually help edit csound files.

Both in the case of front-ends as well as execution from the command line, Csound needs two things:

* A Csoundfile (".csd' or possibly an'.orc' and a'.sco' file)

* A list of command line flags (or configuration options) that configure execution. They determine
things like output filename and format, whether real-time audio and MIDI are enabled, which sound-
card to use, the buffer size, the amount of messages printed, etc. These options can be included in the
".cod fileitself, so for the examples included in this manual you shouldn't need to worry about them.
The complete and very long list of available command flags can be found here, but you might want
to have alook there later...

See the section Configuring if Csound is giving you trouble.
This documentation includes many '.csd' files which you can try out, and which should work directly
from the command line or from any frontend. A simple example is oscil.csd [examples/oscil.csd] that

can be found in the examples folder of this documentation. Y our front-end should allow you to choose
thefile, and it should have a'play' or ‘render' button.

Note for MacCsound users

You might need to remove al the lines from the command options slot in order for the
manual examplesto work.

You can also try the manua examples from the command line by navigating to the examples directory
of the manual using something like this on Windows (assuming the manual is located at c:\Program
Files\Csound\manual\):

cd "c:\Program Fi |l es\ Csound\ nanual \ exanpl es"

or something like:

cd /manual di rect ory/ manual / exanpl es

for the Mac or linux terminals and then typing:

csound oscil.csd

The example files are configured to run in realtime by default, so you should have heard a 2 second sine
wave.

Writing your own csd files

A .csd file looks like this (thisfile is oscils.csd [examples/oscils.csd]):

XXXii

examples/oscil.csd
examples/oscils.csd

Preface

<CsoundSynt hesi zer >

<CsOpti ons>

Sel ect audio/m di flags here according to platform
; Audi o out Audio in No nessages
- odac -iadc -d ;3 RT audio 1/0
; For Non-realtime ouput |eave only the Iine bel ow
; -0 oscils.wav -W;;; for file output any platform
</ CsOpti ons>

<Csl nstrunent s>

Initialize the global variables

sr = 44100
kr = 4410
ksmps = 10

nchnls =1

Instrunent #1 - a fast sine oscillator
instr 1
i amp
i cps
i phs

10000
440
0

al oscils ianp, icps, iphs
out al
endi n

</ Csl nstrunent s>
<CsScor e>

; Play Instrunent #1 for 2 seconds
i 102
e

</ CsScor e>
</ CsoundSynt hesi zer >

Csound's .csd files contain 3 main sections contained within <CsSynthesizer> and </CsSynthesizer>
tags:

e CsOptions - Includes the Command Line flags specific to this particular file. These options can aso
be set using the .csoundrc file or directly in the command line. Some frontends also provide ways to
specify global or local options.

» Cdlnstruments - Contains the instruments or processes available in the file. Instruments are defined
using the instr and endin opcodes. The Cslnstruments section also contains the Orchestra Header
which defines things like sample rate, the number of samplesin a control period and the number of
output channels.

» CsScore - Contains the 'notes' to be played optionally the definition of f-tables. Notes are created us-
ing the i statement, and f-tables are created using the f statement. There are several other score state-
ments available.

Note that anything after a semicolon (;) until the end of the line isacomment, and isignored by csound.

You can write csd files in any plain text editor like notepad or textedit. Just be sure to save the file as

plain text (not rich text). Many frontends include advanced editing capabilities with syntax highlighting

and completion.

You can find an in depth tutorial on getting started with Csound written by Michael Gogins here
[http://csound.sourceforge.net/tutorial .pdf].

What's new in Csound 5.06

XXXiii

Preface

New in Version 5.06 (June 2007)

» New granular opcodes: partikkel, partikkel sync and diskgrain.

» New opcode for event dispatch: scoreline.

e Many new opcodes from Gabriel Maldonado's CsoundAV: hvsl, hvs2, hvs3, vphaseseg, inrg, outrg,
Iposcila, Iposcilsa, Iposcilsa2, tabmorph, tabmorpha, tabmorphi, tabmorphak, trandom, vtablelk,
slider8table, slider16table, slider32table, slider64table, slider8tablef, slider 16tablef, slider32tablef,
dlider64tablef, sliderKawai and the a-rate version of ctrl7.

e Also from CsoundAV, many new FLTK widget opcodes. FLkeyln, FLslidBnk2, FLvdlidBnk,
FLvsidBnk2, FLmouse, FLxyin, FLhvsBox, FLslidBnkSet, FLdidBnkSetk, FLdidBnk2Set,
FLdidBnk2Setk, FLslidBnkGetHandle,

* New pvs opcodes: pvsdiskin, pvsmorph,

- eqfil

* New command line options (--mrwar nings)to control messages
» cdsladspa: aCSD to LADSPA plugin Kit.

» And many bug fixesincluding (but not limited to): fixed k-rate version of system; fixed scaling prob-
lems of vrandh and vrandi; fixed ocasional failure of turnoff; fixed OS X bug; fixed ATScross and
fixed mod.

Csound5GUI now works properly on all platforms and csoundapi~ (pd object) has been updated.

XXXiV

Part |. Overview

Table of Contents

Fa (oo (8 i1 To o E PP PTPPN 38
RECENt DEVEIOPMENES ... eeie et e et e et e e et e e e e e eees 39
Features Of CSOUNA Souiii e 39
Features of CSOUNAV ST ... 40
The CSOUNA COMMIBNGiiiiiiee et e et e e e e et e e e eaan s 42
Order Of PreCEUBNCE .. .covviiiiiiii et 42
Description of the command SYNEAXcoeevuieiiiiiiieeiiiie e 42
Command-line Flags (Alphabetically)cooooeiiiiiiii e, 43
Command-line Flags (DY Category)ooeeu i 51
Csound Environment Variablesc..ooiiuiiiiiiie e 60
Unified File Format for Orchestras and SCOMESovevivviieiiiiiiieeiiinneeeeineeeens 63
[1=STox 11010 o 63
EXBIMPIE .o 64
Command Line Parameter File (.CSOUNIC)cccuvuiiiiiiiiiiiiiieeeei e 65
SCOrE File PrefrOCESSING .. .cevuieii ettt e e e e eaas 65
The EXIract FEALUIEeee et 65
Independent Pre-Processing With SCSOrtooovvviiiiiiiiii e 66
L0 LS 0T o 11 o 67
HOW CSOUNAS WOTKSeiiiiii e e e e 67
AmMplitude ValUES TN CSOUNDccoevtiiiiiii e 68
REAI-TIMEAUAIO ... 69
ReAItIME 1/O ON LINUX .euuiiiieee et 70
WINAOWS ettt e e et e et eeeaan s 75
= o U UPP PP 76
Optimizing AUAIO 1/O LAENCYeeeeiieeiiii et 76
1600]01 1T 0171 ol H PP PP TPPPPT 78
Syntax Of the OFrCRESIIA i 79
OrchestraHeader SEAteMENtSc.uiietiiii e 80
Instrument and Opcode BIOCK StAtEMENESoovvvieiiiiiiie e e 80
Ordinary StAEMENES ...vovnieei e e e e e e e e e e anas 81
Constants and VariablESovveeiiiiieii e 81
Variable INitializationoooiiiii 82
EXPIESSIONS ...ttt ettt et e e e e ea e eaas 82
DirectorieSand FilESiieiii e 83
[\ o 01 oo = (0 = PPN 83
Y=ot o ST PPN 84
NamMed INSEIUMENTSoeiiiii e e e e 84
User Defined Opcodes (UDO)ciieiiieiiiiiieeeeeii ettt 87
The Standard NUMEITC SCOMEieuuiiiiieii ettt et e a e e ean e 88
Preprocessing of Standard SCOrESuvvniiiiiii e 88
L% 88
=110 T 88
S0 £ S 88
SOOI S EIMIENES .. ettt e e e 89
Next-P and Previous-P SymbolSooouiiiiii e 89
L 2]] o P 90
SCOME IMBCIOS ..ttt ettt ettt ettt e et et et e e e e eennas 91
MUIIPIE FIlE SCOIE ... eaes 93
Evaluation Of EXPreESSIONScccuvuiiiiiiiiieeeiii e e %!
L (0010 = o PP 96
LS 0000 Y 96
Lo [0 011 o E PSP PTPPT 101
The Tl interpreter: CSECISN ...ovvniii e 101

Overview

Cswish: thewindowing shellccoooiiiiiiiiii e, 101
A CSOUND SNV ...ttt ettt e et e et e e e et e e e e ran s 102
A SCripting ENVIFONMENEeiiiiiiie e 103
TclCsound as alanguage WIBPPEN ... oceeeeereiiei et e e eeaens 104
TclCsound Command REFEIENCEuviiviiiiiiiii e 104
L0 1] o [o [5o 11 o I 107
L0:'o 101 o I I 01 2C S UPPPTPPPIN 110

37

Introduction

By: Michael Gogins

Csound is a unit generator-based, user-programmable computer music system. It was originally written
by Barry Vercoe at the Massachusetts Institute of Technology in 1984 as the first C language version of
this type of software. Since then Csound has received numerous contributions from researchers, pro-
grammers, and musicians from around the world.

Around 1991, John ffitch ported Csound to Microsoft DOS. Csound currently runs on many varieties of
UNIX and Linux, Microsoft DOS and Windows, all versions of the Macintosh operating system includ-
ing Mac OS X, and others.

There are newer computer music systems that have graphical patch editors (e.g. Max/M SP, PD, jMax, or
Open Sound World), or that use more advanced techniques of software engineering (e.g. Nyquist or Su-
perCollider). Yet Csound still has the largest and most varied set of unit generators, is the best docu-
mented, runs on the most platforms, and is the easiest to extend. It is possible to compile Csound using
double-precision arithmetic throughout for superior sound quality. In short, Csound must be considered
one of the most powerful musical instruments ever created.

To make music with Csound:
1. Write an orchestra (. orc file) that creates instruments and signal processors by connecting unit
generators (also called opcades, in Csound-speak) using Csound's simple programming language.

2. Writeascore (. sco file) that specifies alist of notes and other events to be rendered by the orches-
tra

3. Run Csound to compile the orchestra and score, run the sorted and preprocessed score through the
orchestra, and write digital audio out to a soundfile or sound card.

In addition to this "canonical" version of Csound and CsoundV ST, there are other versions of Csound
and other front ends for Csound, many of which can be found at http://csounds.com.

38

http://csounds.com

Recent Developments

In the time since Barry Vercoe wrote the original Preface to this manual, printed above, many further
contributions have been made to Csound. CsoundV ST is an extended version of Csound 5.

Features of Csound 5

Csound 5 begins a new major version of Csound that includes the following new features:

Now licensed under the GNU Lesser General Public License, an open source license.

A new, easier to manage build system using SCons.

The use of widely--accepted open source libraries:

libsndfile for soundfile input and output.
PortAudio with ASIO drivers for low-latency, real-time audio input and output.
FLTK for graphical widgets that can be programmed in orchestra code.

PortMidi for real-time MIDI input and output.

In addition, Istvan Varga has contributed native MIDI and audio drivers for Windows and Linux.

Simplified audio buffering system.

Status returns from all internal functions, including opcode functions.

MIDI interop opcodes, that enable the same instrument definitions to be used interchangeably for
either live MIDI performance or off-line, score-driven performance.

Plugin opcodes are working and becoming more widely accepted. Many opcodes have been moved
to plugins. Most new opcodes are plugins, including:

The FluidSynth-based SoundFont opcodes.

Python opcodes allowing Python code to execute in the orchestra header or in instrument code, at
i -rate or k-rate.

Loris opcodes for time/frequency analysis and resynthesis.

Control bus opcodes.

Audio mixer opcodes.

String conversion opcodes.

Improved Open Sound Control (OSC) opcodes.

Vectorial opcodes.

The pvs opcodes for real-time spectral processing, a port of Mark Dolson's phase vocoder code.

The ATS opcodes for spectral Analysis, Transformation, and Synthesis of sound based on a si-
nusoidal plus critical-band noise model. A sound in ATS is a symbolic object representing a

39

Recent Devel opments

spectral model that can be sculpted using a variety of transformation functions. These opcodes
can read, transform and resynthesize ATS analysis files. Please note that you need the ATS ap-
plication to produce analysisfiles.

« The STK opcodes, consisting of Perry Cook's original Synthesis Toolkit in C++ instruments, in
C++, adapted as opcodes.

e DSSI and LADSPA adapter opcodes for hosting DSSI and LADSPA pluginsin Csound.
e vstdcs VST adapter opcodes for hosting VST pluginsin Csound.

» The pcodeBase. hpp header file for writing plugin opcodes in C++. This is based on the technique
of static polymorphism viatemplate inheritance.

* Istvan Vargas csound5gui frontend for Csound, simplifying the editing of Csound, the use of
Csound especialy for live performance, and the monitoring of performances.

* Victor Lazzarini's Tcl/Tk frontends for Csound, cstclsh and cswish.

e The Csound API is becoming more standardized and more widely used. There are interfaces or
wrappers to the APl in the following languages:

e C(includecsound. h).

e C++ (include csound. hpp)). This API includes Csound score and orchestra file container func-
tions.

e Python (i nport csnd).
e Java(inport csnd.*;).
e Lua(require "csnd";).
e Lisp (usethe CFFI filecsounds. 1i sp).
* Csound is now truly re-entrant, meaning that multiple instances of Csound can run at the same time,

in the same process.

John ffitch plans to replace the handwritten parser with one written using a parser generator, which
should make it more bug-free and perhaps more efficient.

Features of CsoundVST

CsoundV ST is an extended version of Csound that runs both as a shared library (asa VST plugin or as
an embedded synthesizer) and as a standalone GUI front end. Its main purposes are (a) to make it easier
to extend Csound (e.g. the using Loris plugin opcodes with Python scripting with the Loris analysis
functions), and (b) to streamline the actual use of Csound in composing, particularly for agorithmic
composition, by integrating more tightly with other languages and other software.

e C++library for algorithmic composition, based on Michael Gogins' concept of music graphs.

» Python wrappers for the Csound API and for music graphs.

» Built-in Python interpreter. This enables one to embed orchestras and scores into Python code, and
to write Csound pieces in Python, including both composition (with music graphs) and synthesis.

40

Recent Devel opments

RunsasaVST effect or VST plugin:

e Loadsand saves. csd and . py filesin presets and banks.

e Starts, stops, and restarts.

* Allows oneto write Csound pieces in music notation and hear the results immediately.
e Synchronizes with other tracks in the same host, including looping.

Runs as a standal one application.

Runs as a Python extension module. This enables one to write Csound pieces in any Python inter-
preter.

41

The Csound Command

Csound is a command to generate a sound output from an orchestra and score files (or a unified csd
file). It is designed to be called from aterminal or DOS window, but can be called from an easier to use
front-end. The score file can be in one of many different formats, according to user preference. Tranda
tion, sorting, and formatting into orchestra-readable numeric text is handled by various preprocessors;
all or part of the score is then sent on to the orchestra. Orchestra performance is influenced by command
flags, which set the level of displays and console reports, specify 1/0 filenames and sample formats, and
declare the nature of real-time sensing and control.

Order of Precedence

There are five places where options for Csound performance may be set. They are processed in the fol-
lowing order:

1. Csound's own defaults

2. Filedefined by CSOUNDRC environment variable, or .csoundrc file in the HOME directory

3. .csoundrc filein the current directory
4. <CsOptions>tagina.csdfile
5. Csound command line

The lower options in the list will override any earlier ones. As of version 5.01, sample and control rate
override flags (-r and -k) specified anywhere override sr, kr, and ksmps in the orchestra header.

Description of the command syntax

The csound command is followed by a set of Command Line Flags and the name of the orchestra (.orc)
and score (.sco) files or the Unified csd file (containing both orchestra and score) to process. Command
Line Flags to control input and output configuration may appear anywhere in the command line, either
separately or bundled together. A flag taking a Name or Number will find it in that argument, or in the
immediately subsequent one. The following are thus equivalent commands:

csound -nnB8 orchnane -Sxxfil ename scorenane
csound -n -m 3 orchnanme -x xfilenanme -S scorenane

All flags and names are optional. The default values are;

csound -s -otest -bl1024 -B1024 -n¥V -P128 orchnanme scorenane

where orchname is a file containing Csound orchestra code, and scorename is a file of score data in
standard numeric score format, optionally presorted and time-warped. If scorename is omitted, there are
two default options:

42

The Csound Command

1. if rea-timeinput is expected (e.g. -L, -M, -iadc or -F), adummy score file is substituted consisting
of the single statement 'f 0 3600’ (i.e. listen for RT input for one hour)

2. else CSound usesthe previously processed score.srt in the current directory.
Csound reports on the various stages of score and orchestra processing as it goes, doing various syntax
and error checks along the way. Once the actual performance has begun, any error messages will derive

from either the instrument loader or the unit generators themselves. A CSound command may include
any rational combination of flag arguments.

Running the examples in this manual from the
command line

Most of the manual's examples come ready to run without the need of adding any command line flags
since they specify options within the csd file's <CsOptions> tag. So you only need to type something
like:

csound oscil.csd

within the examples folder, and realtime audio output should be generated.

Command-line Flags (Alphabetically)

Listed below are the command line available in Csound5 in alphabetical order. Various platform imple-
mentations may not react the same way to different flags!

Y ou can view the command line flags organized by category in Command-line Flags (by Category).

The format of acommand is either:
csound [f 1 ags] [orchname] [scorename]
or

csound [f1 ags] [csdfilename]

where the arguments are of 2 types: flags arguments (beginning with a“-",“--" or “-+"), and name argu-

ments (such as filenames). Certain flag arguments take a following name or numeric argument. Flags
that start with “--" and “-+" usually take an argument themselves using “=".

Command-line Flags

-@FILE Provide an extended command-linein file“FILE"

-3, --format=24bit Use 24-bit audio samples.

-8, --format=uchar Use 8-hit unsigned character audio samples.

--format=type Set the audio file output format to one of the formats available in

libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mat5, nis, paf, pvf, raw, sd2, sds, svx, voc, w64, wav,
wavex and xi. Can also be used as --format=type:format or -
-format=format:type to set both the file type (wav, aff, etc.) and
sample format (short, long, float, etc.) at the same time.

43

The Csound Command

-A, --aiff, --format=aiff Write an AIFF format soundfile. Use with the -c, -s, -I, or -f flags.
-a, --format=alaw Use a-law audio samples.

-B NUM, - Number of audio sample-frames held in the DAC hardware buf-
-hardwarebuf samps=NUM fer. Thisis athreshold on which software audio 1/0 (above) will

wait before returning. A small number reduces audio I/O delay;
but the value is often hardware limited, and small values will risk
data lates. In the case of portaudio output (the default real-time
output), the -B parameter (more precisely, -B / sr) is passed as the
"suggested latency" value. Other than that, Csound has no control
over how PortAudio interprets the parameter. The default is 1024
on Linux, 4096 on Mac OS X and 16384 on Windows.

-b NUM, --iobufsamps=NUM Number of audio sample-frames per sound i/o software buffer.
Large is efficient, but small will reduce audio 1/0 delay and im-
prove the accuracy of the timing of real time events. The default
is 256 on Linux, 1024 on MacOS X, and 4096 on Windows. In
real-time performance, Csound waits on audio 1/O on NUM
boundaries. It also processes audio (and polls for other input like
MIDI) on orchestra ksmps boundaries. The two can be made syn-
chronous. For convenience, if NUM is negative, the effective
value is ksmps * -NUM (audio synchronous with k-period bound-
aries). With NUM small (e.g. 1) polling is then frequent and also
locked to fixed DAC sample boundaries.

Note: if both -iadc and -odac are used at the same time (full du-
plex real time audio), the -b option should be set to an integer
multiple of ksmps.

-C, --cscore Use Cscore processing of the scorefile.

-c, --format=schar Use 8-bit signed character audio samples.

-D, --defer-genl Defer GENOL soundfile loads until performance time.

-d, --nodisplays Suppress all displays.

--displays Enables displays, reverting the effect of any previous-d flag.

--default-paths Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

--env:NAME=VALUE Set environment variable NAME to VALUE; note: not all envir-

onment variables can be set this way, because some are read be-
fore parsing the command line. INCDIR, SADIR, SFDIR, and
SSDIR are known to work.

--env:NAME+=VALUE Append VALUE to ;' separated list of search paths in environ-
ment variable NAME (should be INCDIR, SADIR, SFDIR, or
SSDIR). If afileis found in multiple directories, the last will be
used.

--expression-opt Since Csound 5. Turns on some optimizations in expressions:
¢ Redundant assignment operations are eliminated whenever

possible. This means that for example this line al = a2 + a3
will compile as al Add a2, a3 instead of #20 Add a2, a3 al =

44

The Csound Command

#a0 saving a temporary variable and an opcode call. Less op-
code calls result in reduced CPU usage (an average orchestra
may compile about 10% faster with --expression-opt, but it
depends largely on how many expressions are used, what the
control rate is (see aso below), etc.; thus, the difference may
be less, but also much more).

e number of & and k-rate temporary variables is significantly
reduced. This expression

(al + a2 + a3 + a4)

will compile as

#a0 Add al, a2
#a0 Add #a0, a3
#a0 Add #a0, a4 ; (the result is in #a0)

instead of

#a0 Add al, a2
#al Add #a0, a3
#a2 Add #al, a4 ; (the result is in #a2)

The advantages of |ess temporary variables are:

* less cache memory is used, which may improve perform-
ance of orchestras with many a-rate expressions and a low
control rate (e.g. ksmps = 100)

» large orchestras may load faster due to less different iden-
tifier names

e index overflow errors (i.e. when messages like this Case2:
indx=-56004 (ffff253c); (short)indx = 9532 (253c) are
printed and odd behavior or a Csound crash occurs) may
be fixed, because such errors are triggered by too many
different (especialy arate) variable names in a single in-
strument.

Note that this optimization (due to technical reasons) is not
performed on i-rate temporary variables.

. Warning

When --expression-opt is turned on, it is not allowed
to use the i() function with an expression argument,
and relying on the value of k-rate expressions at i-
timeis unsafe.

-F FILE, --midifile=FILE Read MIDI events from MIDI file FILE. The file should have
only one track in Csound versions 4.xx and earlier; this limitation
isremoved in Csound 5.00.

-f, --format=float Use single-format float audio samples (not playable on some sys-

45

The Csound Command

-G, --postscriptdisplay
-g, --asciidisplay
-H#, --heartbeat=NUM

-h, --noheader

--help

-1, --i-only

-i FILE, --input=FILE

-+id_artist=string

-+id_comment=string

-+id_copyright=string

-+id_date=string

-+id_software=string

-+id_title=string

tems, but can be read by -i, soundin and GENO1
Suppress graphics, use PostScript displays instead.
Suppress graphics, use ASCII displays instead.
Print a heartbeat after each soundfile buffer write:
¢ noNUM, arotating bar.

« NUM =1, arotating bar.

* NUM =2, adot (.)

* NUM = 3, filesize in seconds.

* NUM =4, sound abell.

No header on output soundfile. Don't write a file header, just bin-
ary samples.

Display on-line help message.

i-time only. Allocate and initialize al instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides a fast validity check of the
score pfields and orchestrai-variables.

Input soundfile name. If not a full pathname, the file will be
sought first in the current directory, then in that given by the en-
vironment variable SSDIR (if defined), then by SFDIR. The name
stdin will cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range 0 to 1023, or a device nhame separ-
ated by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the
host audio interface whether a device number or a name should be
used. In thefirst case, an out of range number usually resultsin an
error and listing the valid device numbers.

(max. length = 200 characters) Artist tag in output soundfile (no
spaces)

(max. length = 200 characters) Comment tag in output soundfile
(no spaces)

(max. length = 200 characters) Copyright tag in output soundfile
(no spaces)

(max. length = 200 characters) Date tag in output soundfile (no
spaces)

(max. length = 200 characters) Software tag in output soundfile
(no spaces)

(max. length = 200 characters) Title tag in output soundfile (no
spaces)

46

The Csound Command

-+ignore_csopts=integer If set to 1, Csound will ignore all options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

-J, --ircam, --format=ircam Write an IRCAM format soundfile.

-j FILE Currently disabled. Use database FILE for messages to print to

console during performance. In Csound 5.00 and later versions,
the localization of messages is controlled by two environment
variables, both of which are optional. CSSTRNGS points to a dir-
ectory containing .xmg files, and CS_LANG selects alanguage.

-+jack_client=[client_name] The client name used by Csound, defaults to ‘'csoundS'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac

OS X only)
-+jack_inportname=[input port Name prefix of Csound JACK input/output ports; the default is
name prefix], - ‘input’ and 'output’. The actua port name is the channel number

+jack_outportname=[output port appended to the name prefix. (Linux and Mac OS X only)

name prefix]
Example: with the above default settings, a stereo orchestra will
create these portsin full duplex operation:

csound5: i nput 1 (record left)
csound5: i nput 2 (record right)
csound5: out put 1 (pl ayback left)
csound5: out put 2 (pl ayback right)

-K, --nopeaks Do not generate any PEAK chunks.

-k NUM, --control-rate=NUM Override the control rate (KR) supplied by the orchestra.

-L DEVICE, --score-in=DEVICE Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your ter-
minal, or piped from another process. Each line-event is termin-
ated by a carriage-return. Events are coded just like those in a
standard numeric score, except that an event with p2=0 will be
performed immediately, and an event with p2=T will be per-
formed T seconds after arrival. Events can arrive at any time, and
in any order. The score carry feature is legal here, as are held
notes (p3 negative) and string arguments, but ramps and pp or np

references are not.
-1, --format=long Use long integer audio samples.
-M DEVICE, - Read MIDI events from device DEVICE. If using ALSA MIDI
-midi-device=DEVICE (-+rtmidi=alsa), devices are selected by name and not number. So,

you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid
device numbers are printed.

-m NUM, --messagelevel=NUM Message level for standard (terminal) output. Takes the sum of
any of the following values:

e 1= note amplitude messages

47

The Csound Command

e 2 =samplesout of range message
e 4 =warning messages

e 128 = print benchmark information
And exactly one of these to select note amplitude format:

¢ 0 =raw amplitudes, no colours
e 32=dB, no colors
e 64 =dB, out of range highlighted with red
* 96=dB, al colors
e 256 =raw, out of range highlighted with red
e 512 =raw, al colours
The default is 135 (128+4+2+1), which means all messages, raw
amplitude values, and printing elapsed time at the end of perform-
ance. The coloring of raw amplitudes was introduced in version
5.04.
--m-amps=NUM Message level for amplitudes on standard (terminal) output.
¢ 0= no note amplitude messages

¢ 1= note amplitude messages

--m-range=NUM Message level for out of range messages on standard (terminal)
output.

e 0=no samples out of range message
e 1 =samplesout of range message
--m-warnings=NUM Message level for warnings on standard (terminal) output.
¢ 0= no warning messages
¢ 1 =warning messages
--m-dB=NUM Message level for amplitude format on standard (terminal) output.
e 0= absolute amplitude messages
¢ 1 =dB amplitude messages
--m-colours=NUM Message level for amplitude format on standard (terminal) output.
e 0=no colouring of amplitude messages
e 1 =colouring of amplitude messages

--m-benchmarks=NUM Message level for benchmark information on standard (terminal)
output.

¢ 0 =no benchnark numbers

48

The Csound Command

-+max_str_len=integer

--midi-key=N

--midi-key-cps=N

--midi-key-oct=N

--midi-key-pch=N

--midi-velocity=N

--midi-velocity-amp=N

--midioutfile=FILENAME

-+msg_color=boolean

-+mute_tracks=string

-N, --notify

-n, --nosound

--no-default-paths
--no-expression-opt
-O FILE, --logfile=FILE

-0 FILE, --output=FILE

e 1 =print benchnark numbers

(min: 10, max: 10000) Maximum length of string variables + 1,
defaults to 256 allowing a length of 255 characters. The length of
string constantsis not limited by this parameter.

Route MIDI note on message key number to pfield N as MIDI
value [0-127].

Route MIDI note on message key number to pfield N as cycles
per second.

Route MIDI note on message key number to pfield N as linear
octave.

Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

Route MIDI note on message velocity number to pfield N as
MIDI value [0-127].

Route MIDI note on message velocity number to pfield N as amp-
litude [0-OdbFS].

Save MIDI output to afile (Csound 5.00 and later only).

Enable message attributes (colors etc.); might need to be disabled
on some terminals which print strange characters instead of modi-
fying text attributes. default: true.

(max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

Notify (ring the bell) when score or MIDI track is done.

No sound. Do all processing, but bypass writing of sound to disk.
Thisflag does not change the execution in any other way.

Disables adding of directory of CSD/ORC/SCO to search paths.
Disables expression optimization.
Log output to file FILE.

Output soundfile name. If not a full pathname, the soundfile will
be placed in the directory given by the environment variable SF-
DIR (if defined), else in the current directory. The name stdout
will cause audio to be written to standard output, while null res-
ults in no sound output similarly to the -n flag. If no name is giv-
en, the default name will be test.

The name devaudio or dac (you can use -odac or -o dac) will re-
quest writing sound to the host audio output device. It is possible
to select a device number by appending an integer value in the
range 0 to 1023, or adevice name separated by a: character (e.g. -
odac3, -odac:hw:1,1). It depends on the host audio interface
whether a device number or a name should be used. In the first

49

The Csound Command

--0macro:XXX=YYY

-Q DEVICE

-R, --rewrite

-t NUM, --sample-rate=NUM

-+raw_controller_mode=boolean

-+rtaudio=string

-+rtmidi=string

-s, --format=short

--sched

--sched=N

case, an out of range number usually resultsin an error and listing
the valid device numbers.

Set orchestramacro XXX tovalueYYY

Enables MIDI OUT operations to deviceid DEVICE. Thisflag a-
lows parallel MIDI OUT and DAC performance. Unfortunately
the real-time timing implemented in Csound is completely man-
aged by DAC buffer sample flow. So MIDI OUT operations can
present some time irregularities. These irregularities can be re-
duced by using a lower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
device numbers (eg. -Q hw:1,0). In the case of PortMidi and
MME, DEVICE should be a number, and if it is out of range, an
error occurs and the valid device numbers are printed.

Continualy rewrite the header while writing the soundfile
(WAV/AIFF).

Override the sampling rate (SR) supplied by the orchestra.

Disable special handling of MIDI controllers like sustain pedal,
all notes off etc., allowing the use of all the 128 controllers for
any purpose. Thiswill also set theinitial value of all controllersto
zero. Default: no.

(max. length = 20 characters) Real time audio module name. The
default is PortAudio. Also available, depending on platform and
build options: Linux: alsa, jack; Windows: mme; Mac OS X: Cor-
eAudio. In addition, null can be used on all platforms, to disable
the use of any real time audio plugin.

(max. length = 20 characters) Real time MIDI module name. De-
faults to PortMidi, other options (depending on build options):
Linux: alsa; Windows: mme, winmm. In addition, null can be
used on al platforms, to disable the use of any real time MIDI

plugin.

ALSA MIDI devices are selected by name and not number. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0).

Use short integer audio samples.

Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -0 dac or -0 devaudio). See also --sched=N
below.

Linux only. Same as --sched, but alows specifying a priority
value: if N is positive (in the range 1 to 99) the scheduling policy
SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use
of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds

50

The Csound Command

-+skip_seconds=float

--smacro: XXX=YYY

--strset

-T, --terminate-on-midi

-t0, --keep-sorted-score

-t NUM, --tempo=NUM

-U UTILITY, --utility=UTILITY

-u, --format=ulaw

-v, --verbose

-W, --wave, --format=wave

-X FILE, --extract-score=FILE

-Z, --dither

-z NUM, --list-opcodesNUM

(new in Csound 5.00).

(min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

Set score macro XXX tovalueYYY

Csound 5. The --strset option allows setting strset string values
from the command line, in the format '--strsetN=VALUE'. It is
useful for passing parameters to the orchestra (e.g. file names).
Terminate the performance when the end of MIDI fileis reached.

Prevents Csound from deleting the sorted score file, score.srt,
upon exit.

Use the uninterpreted beats of score.srt for this performance, and
set the initial tempo at NUM beats per minute. When this flag is
set, the tempo of score performance is aso controllable from
within the orchestra. WARNING: this mode of operation is exper-
imental and may be unreliable.

Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

Use u-law audio samples.

Verbose trandate and run. Prints details of orch trandation and
performance, enabling errors to be more clearly located.

WriteaWAYV format soundfile.

Extract a portion of the sorted score, score.sit, using the extract
file FILE (see Extract).

Switch on dithering of audio conversion from interna floating
point to 32, 16 and 8-bit formats.

List opcodesin this version:
¢ no NUM, just show names
¢ NUM =0, just show hames

¢ NUM = 1, show arguments to each opcode using the format
<ophame> <outargs> <inargs>

Command-line Flags (by Category)

Listed below are the command line available in Csound5 organized by categories. Various platform im-
plementations may not react the same way to different flags!

Y ou can view the command line flags organized alphabetically in Command-line Flags (Al phabetically).

The format of acommand is either:

csound [f | ags] [orchname] [scorename]

or

51

The Csound Command

csound [f1 ags] [csdfilename]

where the arguments are of 2 types: flags arguments (beginning with a“-",“--" or “-+"), and name argu-
ments (such as filenames). Certain flag arguments take a following name or numeric argument. Flags
that start with “--" and “-+" usually take an argument themselves using “=".

Audio File Ouput

-3, -
f8rmat=24bit
fOrmetficha
fformat=aiff
_a’ -

format=alaw

fbrmat=schar
-format=float

typ
--format=e

-h, -
-noheader
-i FILE, -
-input=FILE

-J, --ircam, -

frmat=irca
rnopeaks

-, -
-format=long
-n, --nosound

-OFILE, -
-out-
put=FILE

Use 24-bit audio samples.

Use 8-hit unsigned character audio samples.

Write an AIFF format soundfile. Use with the -c, -s, -1, or -f flags.
Use a-law audio samples.

Use 8-bit signed character audio samples.

Use single-format float audio samples (not playable on some systems, but can be read by
-i, soundin and GENO1

Set the audio file output format to one of the formats available in libsndfile. At present
the list is aiff, au, avr, cdf, flac, htk, ircam, mat4, mat5, nis, paf, pvf, raw, sd2, sds, svx,
voc, w64, wav, wavex and xi. Can also be used as --format=typeiformat or -
-format=format:type to set both the file type (wav, aiff, etc.) and sample format (short,
long, float, etc.) at the same time.

No header on output soundfile. Don't write afile header, just binary samples.

Input soundfile name. If not a full pathname, the file will be sought first in the current
directory, then in that given by the environment variable SSDIR (if defined), then by
SFDIR. The name stdin will cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio input device. It is pos-
sible to select a device number by appending an integer value in the range O to 1023, or
a device name separated by a: character. It depends on the host audio interface whether
adevice number or a name should be used. In the first case, an out of range number usu-
aly resultsin an error and listing the valid device numbers.

Write an IRCAM format soundfile.
Do not generate any PEAK chunks.
Use long integer audio samples.

No sound. Do all processing, but bypass writing of sound to disk. This flag does not
change the execution in any other way.

Output soundfile name. If not a full pathname, the soundfile will be placed in the direct-
ory given by the environment variable SFDIR (if defined), else in the current directory.
The name stdout will cause audio to be written to standard output, while null resultsin
no sound output similarly to the -n flag. If no name is given, the default name will be
test.

The name dac or devaudio (you can use -odac or -0 dac) will request writing sound to
the host audio output device. It is possible to select a device number by appending an in-
teger value in the range 0 to 1023, or a device name separated by a : character. It de-
pends on the host audio interface whether a device number or a name should be used. In

52

The Csound Command

-R, --rewrite
s, -

;Urr-nat:short
fmatalan
f@umaiitheave

the first case, an out of range number usualy results in an error and listing the valid
device numbers.

Continually rewrite the header while writing the soundfile (WAV/AIFF).
Use short integer audio samples.

Use u-law audio samples.

WriteaWAYV format soundfile.

Switch on dithering of audio conversion from internal floating point to 32, 16 and 8-bit
formats.

Output Fileld tags

-+id_artist=string (max. length = 200 characters) Artist tag in output soundfile (no
spaces)

-+id_comment=string (max. length = 200 characters) Comment tag in output soundfile (no
spaces)

-+id_copyright=string (max. length = 200 characters) Copyright tag in output soundfile (no
spaces)

-+id_date=string (max. length = 200 characters) Date tag in output soundfile (no
spaces)

-+id_software=string (max. length = 200 characters) Software tag in output soundfile (no
spaces)

-+id_title=string (max. length = 200 characters) Title tag in output soundfile (no
spaces)

Realtime Audio I nput/Output

-i adc[DEVICE], - The name devaudio or adc will request sound from the host audio
-input=adc[DEVICE] input device. It is possible to select a device number by appending

an integer value in the range 0 to 1023, or a device name separ-
ated by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the
host audio interface whether a device number or a name should be
used. In the first case, an out of range number usualy resultsin an
error and listing the valid device numbers.

-0 dac[DEVICE], - The name dac or devaudio (you can use -odac or -o dac) will re-
-output=dac[DEVICE] quest writing sound to the host audio output device. It is possible

to select a device number by appending an integer value in the
range 0 to 1023, or adevice name separated by a : character (e.g. -
odac3, -odac:hw:1,1). It depends on the host audio interface
whether a device number or a name should be used. In the first
case, an out of range number usually resultsin an error and listing
the valid device numbers.

53

The Csound Command

-+rtaudio=string

-+jack_client=[client_name]

-+jack_inportname=[input port
name prefix], -
+jack_outportname=[output port
name prefix]

MIDI File Input/Ouput

-F FILE, --midifile=FILE

--midioutfile=FILENAME

-+mute_tracks=string

-+raw_controller_mode=boolean

-+skip_seconds=float

-T, --terminate-on-midi

(max. length = 20 characters) Real time audio module name. The
default is PortAudio (all platforms). Also available, depending on
platform and build options: Linux: asa, jack; Windows. mme;
Mac OS X: CoreAudio. In addition, null can be used on all plat-
forms, to disable the use of any real time audio plugin.

The client name used by Csound, defaults to ‘'csound5'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac
OS X only)

Name prefix of Csound JACK input/output ports; the default is
‘input’ and 'output’. The actual port name is the channel humber
appended to the name prefix. (Linux and Mac OS X only)

Example: with the above default settings, a stereo orchestra will
create these portsin full duplex operation:

csound5: i nput 1
csound5: i nput 2
csound5: out put 1
csound5: out put 2

(record left)
(record right)
(pl ayback left)
(pl ayback right)

Read MIDI events from MIDI file FILE. The file should have
only one track in Csound versions 4.xx and earlier; this limitation
isremoved in Csound 5.00.

Save MIDI output to afile (Csound 5.00 and later only).

(max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

Disable specia handling of MIDI controllers like sustain pedal,
al notes off etc., alowing the use of al the 128 controllers for
any purpose. Thiswill also set theinitia value of al controllersto
zero. Default: no.

(min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

Terminate the performance when the end of MIDI fileis reached.

MIDI Realtime Input/Ouput

-M DEVICE, -
-midi-device=DEVICE

Read MIDI events from device DEVICE. If using ALSA MIDI (-
+rtmidi=alsa), devices are selected by name and not number. So, you
need to use an option like -M hw:CARD,DEVICE where CARD and
DEVICE are the card and device numbers (e.g. -M hw:1,0). In the
case of PortMidi and MME, DEVICE should be a number, and if it
is out of range, an error occurs and the valid device numbers are

54

The Csound Command

--midi-key=N
--midi-key-cps=N
--midi-key-oct=N
--midi-key-pch=N
--midi-velocity=N
--midi-velocity-amp=N

--midioutfile=FILENAME

-+rtmidi=string

-Q DEVICE

Display

-d, --nodisplays
--displays

-G, --postscriptdisplay
-g, --asciidisplay

-H#, --heartbeat=NUM

printed.

Route MIDI note on message key number to pfield N as MIDI vaue
[0-127].

Route MIDI note on message key number to pfield N as cycles per
second.

Route MIDI note on message key number to pfield N as linear
octave.

Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

Route MIDI note on message velocity number to pfield N as MIDI
value [0-127].

Route MIDI note on message velocity number to pfield N as amp-
litude [0-OdbFS].

Save MIDI output to afile (Csound 5.00 and later only).

(max. length = 20 characters) Rea time MIDI module name. De-
faults to PortMidi, other options (depending on build options):
Linux: alsa; Windows: mme, winmm. In addition, null can be used
on al platforms, to disable the use of any real time MIDI plugin.

ALSA MIDI devices are selected by name and not number. So, you
need to use an option like -M hw:CARD,DEVICE where CARD and
DEVICE are the card and device numbers (e.g. -M hw:1,0).

Enables MIDI OUT operations to device id DEVICE. This flag al-
lows parallel MIDI OUT and DAC performance. Unfortunately the
real-time timing implemented in Csound is completely managed by
DAC buffer sample flow. So MIDI OUT operations can present
some time irregularities. These irregularities can be reduced by using
alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by name
and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
device numbers (e.g. -Q hw:1,0). In the case of PortMidi and MME,
DEVICE should be a number, and if it is out of range, an error oc-
curs and the valid device numbers are printed.

Suppress al displays.

Enables displays, reverting the effect of any previous -d flag.
Suppress graphics, use PostScript displays instead.

Suppress graphics, use ASCII displays instead.

Print a heartbeat after each soundfile buffer write:

55

The Csound Command

-m NUM, -
-messagelevel=NUM

--m-amps=NUM

--m-range=NUM

--m-warnings=NUM

--m-dB=NUM

¢ noNUM, arotating bar.

« NUM =1, arotating bar.

« NUM =2, adot ()

* NUM = 3, filesizein seconds.
* NUM =4, sound abell.

Message level for standard (terminal) output. Takes the sum of any of the
following values:

¢ 1= note amplitude messages
e 2 =samplesout of range message
e 4 =warning messages

e 128 = print benchmark information
And exactly one of these to select note amplitude format:

e 0=raw amplitudes, no colours

e 32=dB, nocolors

e 64 =dB, out of range highlighted with red

* 96=dB,al colors

e 256 =raw, out of range highlighted with red

e 512 =raw, dl colours

The default is 135 (128+4+2+1), which means all messages, raw amp-
litude values, and printing elapsed time at the end of performance. The
coloring of raw amplitudes was introduced in version 5.04

Message level for amplitudes on standard (terminal) output.

¢ 0= no note amplitude messages

¢ 1= note amplitude messages

Message level for out of range messages on standard (terminal) output.

¢ 0=no samples out of range message

e 1 =samplesout of range message

Message level for warnings on standard (terminal) output.

¢ 0= no warning messages

e 1=warning messages

Message level for amplitude format on standard (terminal) output.

¢ 0= absolute amplitude messages

56

The Csound Command

¢ 1 =dB amplitude messages
--m-colours=NUM Message level for amplitude format on standard (terminal) output.
¢ 0 =no colouring of amplitude messages
e 1 =colouring of amplitude messages
--m-benchmarks=NUM Message level for benchmark information on standard (terminal) output.
* 0=no benchnark numbers
e 1 =print benchnark numbers
-+msg_color=boolean Enable message attributes (colors etc.); might need to be disabled on

some terminals which print strange characters instead of modifying text
attributes. default: true.

-v, --verbose Verbose trandate and run. Prints details of orch transation and perform-
ance, enabling errorsto be more clearly located.

-zNUM, - List opcodesin this version:

-list-opcodesNUM

« no NUM, just show names
¢ NUM =0, just show names

« NUM = 1, show arguments to each opcode using the format
<ophame> <outargs> <inargs>

Performance Configuration and Control

-B NUM, - Number of audio sample-frames held in the DAC hardware buffer. This
-hardwarebufsamps=NUM is a threshold on which software audio 1/O (above) will wait before re-
turning. A small number reduces audio I/O delay; but the value is often
hardware limited, and small vaues will risk data lates. In the case of
portaudio output (the default real-time output), the -B parameter (more
precisely, -B / sr) is passed as the "suggested latency” value. Other than
that, Csound has no control over how PortAudio interprets the paramet-
er. The default is 1024 on Linux, 4096 on Mac OS X and 16384 on

Windows.
-b NUM, - Number of audio sample-frames per sound i/o software buffer. Largeis
-iobufsamps=NUM efficient, but small will reduce audio 1/0 delay and improve the accur-

acy of the timing of real time events. The default is 256 on Linux, 1024
on MacOS X, and 4096 on Windows. In real-time performance, Csound
waits on audio 1/0 on NUM boundaries. It also processes audio (and
polls for other input like MIDI) on orchestra ksmps boundaries. The two
can be made synchronous. For convenience, if NUM is negative, the ef-
fective value is ksmps * -NUM (audio synchronous with k-period
boundaries). With NUM small (e.g. 1) polling is then frequent and also
locked to fixed DAC sample boundaries.

Note: if both -iadc and -odac are used at the same time (full duplex real
time audio), the -b option should be set to an integer multiple of ksmps.

57

The Csound Command

-k NUM, -
-control-rate=NUM
-L DEVICE, -
-score-in=DEVICE

--omacro:XXX=YYY
-r NUM, --sample-rate=NUM
--sched

--sched=N

--smacro: XXX=YYY

--strset

-+skip_seconds=float

-t NUM, --tempo=NUM

Miscellaneous

-@ FILE
-C, --cscore

--default-paths

-D, --defer-genl

--env:NAME=VALUE

Override the control rate (KR) supplied by the orchestra.

Read line-oriented real-time score events from device DEVICE. The
name stdin will permit score events to be typed at your terminal, or
piped from another process. Each line-event is terminated by a carriage-
return. Events are coded just like those in a standard numeric score, ex-
cept that an event with p2=0 will be performed immediately, and an
event with p2=T will be performed T seconds after arrival. Events can
arrive at any time, and in any order. The score carry feature is lega
here, as are held notes (p3 negative) and string arguments, but ramps
and pp or np references are not.

Set orchestramacro XXX tovalue YYY
Override the sampling rate (SR) supplied by the orchestra.

Linux only. Use real-time scheduling and lock memory. (Also requires -
d and either -o dac or -0 devaudio). See also --sched=N below.

Linux only. Same as --sched, but allows specifying a priority value: if N
is positive (in the range 1 to 99) the scheduling policy SCHED_RR will
be used with a priority of N; otherwise, SCHED_OTHER is used with
the nice level set to N. Can aso be used in the format -
-sched=N,MAXCPU,TIME to enable the use of a "watchdog" thread
that terminates Csound if the average CPU usage exceeds MAXCPU
percents over aperoid of TIME seconds (new in Csound 5.00).

Set score macro XXX tovalueYYY

Csound 5. The --strset option allows setting strset string values from the
command line, in the format '--strsetN=VALUE'. It is useful for passing
parameters to the orchestra (e.g. file names).

(min: 0) Start playback at the specified time (in seconds), skipping earli-
er eventsin the score and MIDI file.

Use the uninterpreted beats of score.srt for this performance, and set the
initial tempo at NUM beats per minute. When this flag is set, the tempo
of score performance is aso controllable from within the orchestra.
WARNING: this mode of operation is experimental and may be unreli-
able.

Provide an extended command-linein file“FILE”
Use Cscore processing of the scorefile.

Reenables adding of directory of CSD/ORC/SCO to search paths, if
it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

Defer GENO1 soundfile loads until performance time.

Set environment variable NAME to VALUE; note: not al environ-
ment variables can be set this way, because some are read before

58

The Csound Command

--env:NAME+=VALUE

--expression-opt

parsing the command line. INCDIR, SADIR, SFDIR, and SSDIR
are known to work.

Append VALUE to ;' separated list of search paths in environment
variable NAME (should be INCDIR, SADIR, SFDIR, or SSDIR).
If afileisfound in multiple directories, the last will be used.

Snce Csound 5. Turns on some optimizations in expressions:

¢ Redundant assignment operations are eliminated whenever pos-
sible. This means that for example this line al = a2 + a3 will
compile as al Add a2, a3 instead of #a0 Add a2, a3 al = #a0
saving a temporary variable and an opcode call. Less opcode
calls result in reduced CPU usage (an average orchestra may
compile about 10% faster with --expression-opt, but it depends
largely on how many expressions are used, what the control rate
is (see also below), etc.; thus, the difference may be less, but
also much more).

¢ number of & and k-rate temporary variables is significantly re-
duced. This expression

(al + a2 + a3 + a4)

will compile as

#a0 Add al, a2
#a0 Add #a0, a3
#a0 Add #a0, a4 ; (the result is in #a0)

instead of

#a0 Add al, a2
#al Add #a0, a3
#a2 Add #al, a4 ; (the result is in #a2)

The advantages of |ess temporary variables are:

» less cache memory is used, which may improve perform-
ance of orchestras with many a-rate expressions and a low
control rate (e.g. ksmps = 100)

» large orchestras may load faster due to less different identi-
fier names

» index overflow errors (i.e. when messages like this Case2:
indx=-56004 (ffff253c); (short)indx = 9532 (253c) are prin-
ted and odd behavior or a Csound crash occurs) may be
fixed, because such errors are triggered by too many differ-
ent (especially a-rate) variable namesin asingle instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

Warning

When --expression-opt is turned on, it is not allowed

59

The Csound Command

--help

-l, --i-only

-+ignore_csopts=integer

- FILE

-+max_str_len=integer

-N, --notify
--no-default-paths
--no-expression-opt

-O FILE, --logfile=FILE

-t0, --keep-sorted-score

-U UTILITY, --utility=UTILITY

-X FILE, --extract-score=FILE

to use the i() function with an expression argument,
and relying on the value of k-rate expressions at i-
timeis unsafe.

Display on-line help message.

i-time only. Allocate and initialize all instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides a fast validity check of the
score pfields and orchestrai-variables.

If set to 1, Csound will ignore al options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

Currently disabled. Use database FILE for messages to print to
console during performance. In Csound 5.00 and later versions, the
localization of messages is controlled by two environment vari-
ables, both of which are optional. CSSTRNGS points to a directory
containing .xmg files, and CS_LANG selects alanguage.

(min: 10, max: 10000) Maximum length of string variables + 1; de-
faults to 256 alowing a length of 255 characters. The length of
string constantsis not limited by this parameter.

Notify (ring the bell) when score or MIDI track is done.

Disables adding of directory of CSD/ORC/SCO to search paths.
Disables expression optimization.

Log output to file FILE.

Prevents Csound from deleting the sorted score file, score.srt, upon
exit.

Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

Extract a portion of the sorted score, score.srt, using the extract file
FILE (see Extract).

Csound Environment Variables

The following environment variables can be used by Csound:

* SFDIR: Default directory for sound files. Used if no full path is given for sound files.

e SSDIR: Default directory for input (source) audio and MIDI files. Used if no full path is given for
sound files. May be used in conjunction with SFDIR to set separate input and output directories.
Please note that MIDI files as well as audio files are also sought inside SSDIR.

» SADIR: Default directory for analysisfiles. Used if no full path is given for analysisfiles.

60

The Csound Command

» SFOUTYP: Sets the default output file type. Currently only 'WAV', 'AIFF' and 'IRCAM' are valid.
This flag is checked by the csound executable and the utilities and is used if no file output type is
specified.

* INCDIR: Include directory. Specifies the location of files used by #include statements.

» OPCODEDIR: Defines the location of csound opcode plugins for the single precision float (32-bit)
version.

* OPCODEDIRG64: Defines the location of csound opcode plugins for the double precision float
(64-bit) version.

» SNAPDIR: Isused by the FLTK widget opcodes when loading and saving snapshots.

* CSOUNDRC: Defines the csound resource (or configuration) file. A full path and filename contain-
ing csound flags must be specified. This variable defaults to .csoundrc if not present.

e CSSTRNGS: In Csound 5.00 and later versions, the localisation of messages is controlled by two en-
vironment variables CSSTRNGS and CS_LANG, both of which are optional. CSSTRNGS points to
adirectory containing .xmg files.

e CS LANG: Selects alanguage for csound messages.

* RAWWAVE_PATH: Is used by the STK opcodes to find the raw wave files. Only relevant if you
areusing STK wrapper opcodes like STKBowed or STKBrass.

e CSNOSTORP: If this environment variable is set to "yes', then any graph displays are closed auto-
matically at the end of performance (meaning that you possibly will not see much of them in the case
of ashort non-realtime render). Otherwise, you need to click "Quit" in the FLTK display window to
exit, allowing for viewing the graphs even after the end of score is reached.

MFDIR: Default directory for MIDI files. Used if no full path is given for MIDI files. Please note
that MIDI files are sought in SSDIR and SFDIR aswell.

For more information about SFDIR, SSDIR, SADIR, MFDIR and INCDIR see Directories and files.

The only mandatory environment variables are OPCODEDIR and OPCODEDIR®64. It is very important
to set them correctly, otherwise most of the opcodes will not be available. Make sure you set the path
correctly depending on the precision of your binary. if you run csound on a command line without any
arguments you should see some text like : Csound version 5.01.0 beta (float samples) Mar 23 2006. This
text refersto the single precision version.

CSSTRNGS and CS_LANG currently have very limited use since Csound has not yet been completely
trandlated into other languages.

Other environment variables which are not exclusive to Csound but which might be of importance are:

e PATH: The directory containing csound executables should be listed in this variable.

e PYTHONPATH: If you intend to use CsoundVST and python, the directory containing the
_CsoundV ST shared library and the CsoundV ST.py file must be in your PYTHONPATH environ-
ment variable (or the default path python searches in), so that the Python runtime knows how to load
thesefiles.

 LADSPA PATH and DSS_PATH: These environment variables are required if you are using the
dssidcs (LADSPA and DSSI host) plug-in opcodes.

* CSDOCDIR: Specifies the directory where the html help files are located. Though not used by

61

The Csound Command

Csound directly, this environment variable can help front-ends and editors (which implement it) to
find the csound manual .

Setting environment variables

On the command line

You can set environment variables on the command line or the configuration file .csoundrc by using the
command line flag --env:NAME=VALUE or --env:NAME+=VALUE, where NAME is the environ-
ment variable name, and VALUE isits value. See Command-line Flags

Note

Please note that this method of setting environment variables will not work for variables
which are parsed before the command line arguments. SADIR, SSDIR, SFDIR, INCDIR,
SNAPDIR, RAWWAVE_PATH, CSNOSTOP, SFOUTY P should work, but the following
environment variables must be set on the system prior to running csound: OPCODEDIR,
OPCODEDIR64, CSSTRINGS, and CS LANG. CSOUNDRC can currently (v. 5.02) be
set using --env, but this behavior is not guaranteed for future versions.

Windows

To set a csound environment on Windows XP and 2000 go to Control Panel->System->Advanced and
click on the button 'Environment Variables. On other Windows earlier than XP you set environment
variables in the autoexec.bat file. Go to 'My Computer', select C: drive, right click on autoexec.bat, and
select 'Edit'. The statement format is;: SET NAME=VALUE .

Linux

You can set environment variables on Linux in many ways. You can set them using the export shell
command, by setting them on .bashrc or similar files or by adding them to the /etc/profilefile.

Mac

If the user has a Mac that shipped with an OS X version prior to 10.3 (includes 10.2 and 10.1) then it is
possible that the default shell isthe Tenex C-shell (tcsh). If thisisthe case, then you either have to type:

~% set env OPCCDEDI R "/ User s/ you/ your/ Csound5/ bui | d"

or change your /etc/profile and or edit your .tcshrc file.

If the user has a Mac that shipped with OS X 10.3 or 10.4 then it likely has the "Bourne-again" C-shell
(bash) asthe default shell. If thisis the case, then the user must type something like:

~$ export OPCODEDI R=/ User s/ you/ your/ Csound5/ bui | d

in addition if the bash shell isthe default, then it is usually easier to edit your .bashrc or /etc/profile.

Note that if users choose one of the above methods, ie editing the .bashrc file then the environment vari-
ables are executed when anew shell is created. This can be problematic if your application implements a
Quartz or Aquainterface and does not use the commandline.

If thisisthe case, then the standard solution (up to OS 10.3.9 and unless the application uses the csound-
APl and sets the environ variables directly) is to create an XML property list file (called a .plist file by

62

The Csound Command

the OS). This file should nominally be located at ~/.MacOSX/Environment.plist. This has been a solu-
tion specifically for the [csoundapi~] object for Pd on OS X. Since Pd uses an OS X native .app style
packaging, and runs off of the Aqua interface, the standard means of supplying environment variables to
Csound do not work. The solution isto set Csound's environment variables for the Aqua environment.

Likely, most users will not have the hidden folder .MacOSX located in their $HOME directory (aka ~/)
This folder must first be created and the Environment.plist added to this folder. The contents of the En-
vironment.plist file should be something like:

<?xm version="1.0" encodi ng=' UTF-8"?>

<! DOCTYPE plist PUBLIC "-//Apple Conputer//DTD PLIST 1.0//EN'
"http://ww. appl e. com DTDs/ PropertyList-1.0.dtd">

<plist version="1.0">

<di ct >

<key>OPCODEDI R</ key>

<string>/Li brary/ Framewor ks/ CsoundLi b. f ramewor k/ Ver si ons/ 5. 1/ Resour ces/ Opcodes</ stri ng>

<key>OPCCDEDI R64</ key>

<string>/ Vol umes/ Ext er nal HDY devel / csound5/ | i b64</ string>

<key>| NCDI R</ key>

<string>/ Vol umes/ Ext er nal HOY CSOUNDY i ncl ude</ stri ng>

<key>SFDl R</ key>

<string>/ Vol umes/ Ext er nal HDY i Tunes/ csoundaudi o</ stri ng>

</dict>

</plist>

and so on, using the XML <key> tag for each environment variable required by the API and the <string>
tag for it's corresponding path on the system.

Please note that you must login out and login in for these changes to take effect.

Unified File Format for Orchestras and Scores

Description

The Unified File Format, introduced in Csound version 3.50, enables the orchestra and score files, as
well as command line flags, to be combined in one file. The file has the extension .csd. This format was
originally introduced by Michael Goginsin AXCsound.

Thefileisastructured datafile which uses markup language, similar to any SGML such asHTML. Start

tags (<tag>) and end tags (</tag>) are used to delimit the various elements. The file is saved as a text
file

Structured Data File Format

Mandatory Elements

The file must begin with the start tag < CsoundSynthesizer>. The last line of the file must be the end tag
</CsoundSynthesizer>. This element is used to alert the csound compiler to the .csd format.

Options (<CsOptions>)

Csound command line flags are put in the Options Element. This section is delimited by the start tag
<CsOptions> and the end tag </CsOptions> Lines beginning with # or ; are treated as comments.

Orchestra (<CsInstruments>)

The instrument definitions (orchestra) are put into the Instruments Element. The statements and syntax
in this section are identical to the Csound orchestra file, and have the same requirements, including the

63

The Csound Command

header statements (sr, kr, etc.) This Instruments Element is delimited with the start tag < Cslnstruments>
and the end tag </Cslnstruments>.

Score (<CsScore>)
Csound score statements are put in the Score Element. The statements and syntax in this section are

identical to the Csound score file, and have the same requirements. The Score Element is delimited by
the start tag <CsScore> and the end tag </CsScore>.

Optional Elements

Included Base64 Files (<CsFileB>)

Base64 encoded files may be included with the tag <CsFileB filename=filename>, where filename is
the name of the file to be included. The Base64 encoded data should be terminated with a </CsFileB>
tag. For encoding files, the csh64enc and makecsd utilities (included with Csound 5.00 and newer) can
be used. The file will be extracted to the current directory, and deleted at end of performance. If thereis
an aready existing file with the same name, it is not overwritten, but an error will occur instead.

Base64 encoded MIDI files may be included with the tag < CsMidifileB filename=filename>, where file-
name is the name of the file containing the MIDI information. There is no matching end tag. New in
Csound version 4.07. Using this tag is not recommended; use <CsFileB> instead.

Base64 encoded sample files may be included with the tag < CsSampleB filename=filename>, where fi-

lename is the name of the file containing the sample. There is no matching end tag. New in Csound ver-
sion 4.07. Using thistag is not recommended; use < CsFileB> instead.

Version Blocking (<CsVersion>)

Versions of Csound may blocked by placing one of the following statements between the start tag
<CsVersion> and the end tag </CsVersion>:

Before #. #

or

After #. #

where #.# is the requested Csound version number. The second statement may be written simply as:
#. #

New in Csound version 4.09.

Example

Below isasamplefile, test.csd, which renders a .wav file at 44.1 kHz sample rate containing one second
of a 1 kHz sine wave. Displays are suppressed. test.csd was created from two files, tone.orc and
tone.sco, with the addition of command line flags.

<CsoundSynt hesi zer >;
; test.csd - a Csound structured data file

The Csound Command

<CsOpt i ons>
-W-d -0 tone.wav
</ CsOpti ons>

<CsVer si on> ; optional section
Before 4.10 ; these two statenents check for
After 4.08 ; Csound version 4.09

</ CsVer si on>

<Csl nstrunent s>
; originally tone.orc
sr = 44100
kr = 4410
ksnmps = 10
nchnls = 1
instr 1
al oscil p4, p5, 1 ; sinple oscillator
out al
endin
</ Csl nst runent s>

<CsScor e>
; originally tone.sco
f1 0 8192 10 1
il 0 1 20000 1000 ; play one second of one kHz tone
e
</ CsScor e>

</ CsoundSynt hesi zer >

Command Line Parameter File (.csoundrc)

If the file .csoundrc exists, it will be used to set the command line parameters. These can be overridden.
Csound 5.00 and newer versions read this file from the HOME directory first (or the full path file name
defined by the CSOUNDRC environment variable), and then the current directory. If both exist, options
in the .csoundrc in the current directory will have higher precedence. It uses the same form as a.csd file,
but no tags are needed. Lines beginning with # or ; are treated as comments.

A .csoundrc file can contain something like this:

-+rtaudio=portaudio -odac2 -iadc2 -+rtmidi=winmme -M1 -Q1 -m0

In this case, csound will generate real-time output and take realtime input from device 2, using the
portaudio driver interface. It will input and output realtime MIDI on interface 1. It will print very few
messages (-m0). These options will be used by default when other options are not given inside the
<CsOptions> of the .csd file or the command line (See Order of precendence).

Score File Preprocessing

The Extract Feature

This feature will extract a segment of a sorted numeric score file according to instructions taken from a
control file. The contral file contains an instrument list and two time points, from and to, in the form:

instruments 1 2 from 1:27.5 to 2:2

The component |abels may be abbreviated asi, f and t. The time points denote the beginning and end of

65

The Csound Command

the extract in terms of:

[section no.] : [beat no.].

each of the three partsis also optional. The default values for missing i, f or t are:

all instruments, beginning of score, end of score

Independent Pre-Processing with Scsort

Although the result of all score preprocessing is retained in the file score.srt after orchestra performance
(it exists as soon as score preprocessing has completed), the user may sometimes want to run these
phases independently. The command

scot fil enane

will process the Scot formatted filename, and leave a standard numeric score result in afile named score
for perusal or later processing.

The command

scscort < infile > outfile

will put a numeric score infile through Carry, Tempo, and Sort preprocessing, leaving the result in out-
file

Likewise extract, also normally invoked as part of the Csound command, can be invoked as a standalone
program:

extract xfile < score.sort > score.extract

This command expects an already sorted score. An unsorted score should first be sent through Scsort
then piped to the extract program:

scsort < scorefile | extract xfile > score.extract

66

Using Csound

Csound can be operated in a variety of modes and configurations. The origina method for running
Csound was as a consol e program (DOS prompt for Windows, Terminal for Mac OS X). This, of course,
till works. Running csound without any arguments prints out a list of command-line options, which are
more fully explained in the Command Line Flags (by Category) section. Normally, the user executes
something like:

csound -W-onysoundfil e.wav nyorchestra.orc myscore.sco
or, to use the single-file Csound structured data (. csd) format:
csound mnyscore. csd

You can find many .csd files in the examples folder. Most opcode entries in this manual also include
simple .csd files showing the usage of the opcode.

There are also many Front-Ends which can be used to run csound. A Front-End is a graphical program
that eases the process of running csound, and sometimes provides editing and composing functions.

Csound also has severa ways of producing output. It can:

» Read and write soundfiles (off-line rendering) - Using the -0 and -i flags specifying an output file-
name.

» Read and write digital audio using a sound card (real-time rendering) - Using the -odac and -iadc
flags

* Read and write MIDI files (non-realtime) - Using the -F and --midioutfile flags.

* Read and write MIDI using a MIDI interface and controller (real-time control) - Using the -M and -
Qflags.

How Csound5 works

Csound processes and generates output using "unit generators’ (ugens) called opcodes. These opcodes
are used to define instruments in the orchestra. When you run Csound, the engine loads the base Op-
codes, and the opcodes contained in separate loadable "opcode libraries' (there are also loadable GEN
routines). It then interprets the orchestra (through the orchestra loader). The engine sets up up an instru-
ment processing chain, which then recieves events from the score or in real-time. The processing chain
uses the input/output modules to generate output. There are modules that can write to file, or generate
real-time audio output.

67

Using Csound

[Orchestra reader]

[Input/Output] TN,) J
o

External libraries

*i Engine] ~Base upcudes]

L T -
=]_| Y Messages |

i

Loadble Ilbraries]dl'

o

The Csound5 Modular structure.

Csound's processing buffers

Csound processes audio in sample blocks called buffers. There are three separate buffer layers:

1. spout = Csound's innermost software buffer, contains ksmps sample frames. Csound processes real-
time control events once every ksmps sample frames.

2. -b = Csound's intermediate software buffer (the "software" buffer), in sample frames. Should be
(but does not need to be) an integral multiple of ksmps (can equal ksmps too). Once per ksmps
sample frames, Csound copies spout to the -b buffer. Once per -b sample frames, Csound copiesthe
-b buffer to the -B "hardware" buffer.

3. -B = The sound card's internal buffer (the "hardware" buffer), in sample frames. Should be (and
may need to be) an integral multiple of -b. If Csound misses delivering a -b one time, the extra -b
sample frames in -b are still there for the sound card to keep playing while Csound catches up. But
they can be the same size if you're willing to bet Csound can aways keep up with the sound card.

Amplitude values in Csound

Amplitude values in Csound are always relative to a "0dbfs"' value representing the peak available amp-
litude before clipping, in either an AD/DA codec, or in a soundfile with a defined range (which both
WAVE and AIFF are). In the original Csound, this value was always 32767, corresponding to the range
of a 16hit soundfile or 16bit AD/DA codec, Csound's only possible output back then. This remains the
default peak amplitude for Csound, for backward compatibility and you will find most of this manual's
examples still use this value (hence you find large amplitude values like 10000).

The 0dbfs value enables Csound to produce appropriately scaled values to whatever output format is be-
ing used, whether 24bit integer, 32bit floats, or even 32bit integers. Put another way, the literal amp-

68

Using Csound

litude values you write in a Csound instrument only match those written literally to the file if the Odbfs
value in Csound corresponds exactly to that of the output sample format. The consequence of this ap-
proach is that you can write a piece with a certain amplitude and have it render correctly and identically
(setting aside of course the better dynamic range of the high-res formats) whether written to an integer
or floats file, or rendered in real-time.

Note

The one exception to thisis if you choose to write to a "raw" (headerless) file format. In
such cases the internal Odbfs value is meaningless, and whatever values you use are written
unmodified. This does enable arbitrary data to be generated or processed by Csound. Itisa
relatively exotic thing to do, but some users need it.

Y ou can choose to redefine the Odbfs value in the orchestra header, purely for your own convenience or
preference. Many people will choose 1.0 (the standard for SAOL, other software like Pure Data, and for
many plugin standards such as VST, LADSPA, CoreAudio AudioUnits, etc), but any valueis possible.

The common factor in defining amplitudes is the decibel (dB) scale, with OdBFS always understood as
digital peak; hence "0dbfs' means "0dB Full-Scale value". This measure is different to actual amplitude
values, since amplitude values are a linear scale which show the actual oscillation around 0, so they can
be positive or negative. Decibel values are an absolute logarithmic scale, but can be useful for most op-
codes as well. You can convert amplitude to and from decibels using the ampdb,ampdbfs, dbamp and
dbfsamp functions. This way, Csound enables the programmer to express al amplitudes in dB - lower
amplitudes will then be represented by negative dB values. This reflects industry practice (e.g. in level
meters in mixers, etc).

For example the same dB level of -6dB (half as loud) is expressed as an explicit amplitude according to
Odbfs as:

Table 1. dBFSin relation to amplitude

dB.g 0dbfs = 32767 (default) |Odbfs=1 0dbfs = 1000
0 32767 1 1000
-6 16384 05 500

Some Csound users might therefore be minded to express all levelsin dBFS, and obviate any confusion
or ambiguity of level that may otherwise arise when using explicit amplitude values. The decibel scale
reflects the response of the ear pretty closely, and that when you want to express areally quiet level, it
might be easier and more expressive to write "-46dB" than "0.005" or "163.8".

Real-Time Audio

The following information applies mostly to csound being run directly from the command line. Front-
ends implement these features in different ways, but knowledge of them is necessary in some of them.

The -i and -o flags can are used to specify realtime output instead of the ordinary non-realtime file out-
put. You should use - o dac for realtime output and -i adc for realtime input. Naturally, you can use
either one or both if your hardware supports it. You can also specify the hardware you want to use by
appending a device number or name to the flag (See -i and -0).

Y ou might also need to use the -+rtaudio flag to specify the driver interface to be used. Csound defaults
to using Portaudio, which is cross-plaform and reliable, but for better performance, you might need to
use ALSA or JACK on linux, and CoreAudio on Mac. You can use ASIO on Windows if your version
of Portaudio has been compiled with ASIO support.

69

Using Csound

You can see alist of available devices by giving a device number which is out of range, for instance - o
dac99. Thiswill also reved if you have ASIO availableif you are using PortAudio.

Period & Buffer Sizes

Period and buffer sizes will vary greatly from one machine to another. Lower buffer sizes will result in
lower latency, but might cause breakups or clicks in the audio. The Csound flags which control period
and buffer sizes are -b and -B, respectively. Buffer size is hardware dependant, and some experimenta-
tion may be necessary to find the optimal balance between low latency performance and uninterrupted
audio output. The values given to -b and -B should be powers of two, and the value of -B should be at
least one power of two higher than that of -b.

Currently, with - B set to 512, audio output latency is about 12 milliseconds, fast enough for reasonably
responsive keyboad playing. Even shorter latencies, are feasible on some systems.

Control Rate

Low values for ksmps will in general give a higher quality of synthesis, but will consume more system
resources. There is no hard and fast rule for setting ksmps - different orchestras will require different
control rates. A waveguide instrument will need a ksmps of 1 (and may not be suitable for realtime use),
whereas a simple FM synth may be run with a higher ksmps without noticeable degradation of sound. If
the FM synth were to be used to play a monophonic bassline, a very low ksmps may be used, however
more complex note clusters will require a higher ksmps. A well-tuned Linux system should be capable
of running even complex polyphonic synths with ksmps values as low as 4 or 8. If full duplex audio is
required, -b must be an integer multiple of ksmps. Bearing thisin mind, arule of thumb might be to only
use powers of two for ksmps.

Some settings differ according to platform. See further below for information for .

Realtime I/O on Linux

Under Linux, the default PortAudio/PortMidi settings will result in higher latency than that which can be
achieved using ALSA and/or JACK. The PortMusic plugins are audio and MIDI servers, which provide
an interface to the ALSA drivers, in a manner which is in some respects similar but fundamentally dif-
ferent from that provided by JACK. For a more detailed comparison please refer to:

jackaudio.org/faq [http://jackaudio.org/faq]
Using ALSA

The highest level of control and the lowest possible level of latency are to be achieved using the ALSA
plugins in combination with the --sched flag. Using --sched requires that Csound be run as the root user,
which may be impossible or undesirable in some circumstances.

The ALSA plugins require the "name" of a"card" and a "device". Unless you have named your "cards’
in ~/.asoundrc (or /etc/asound.conf), the "names" will actually be numbers. In order to obtain alist of the
possible configurations, use the command line utilities "aplay”, "arecord” and "amidi". These utilities are
included with most Linux distros, or can be downloaded and built from source here:

ftp://ftp.al sa-project.org/pub/utils/
Audio Output

Running the following command:

70

http://jackaudio.org/faq
ftp://ftp.alsa-project.org/pub/utils/

Using Csound

apl ay -

will give you alist of the audio playback devices available on your system. Typically this list will look
something like:

[..]
%% | jst of PLAYBACK Hardware Devices **
card 0: A5451 [ALI 5451], device 0: ALI 5451 [ALI 5451]

[..]

If you have more than one card on your system, or if there is more than one device on your card, the list
will of course be more complicated, however in all cases the information that is pertinent is the number/
name of the card/device. In order to use the above soundcard for audio output, the following flag would
be added to the Csound command line, ~/.csoundrc, or the <CsOptions>section of a CSD:

-+rtaudi o=al sa -0 dac

Output with dmix

If you would like to use Csound with dmix and your soundcard does not support hardware mixing of au-
dio streams, special care is needed in setting up of software (-b) and hardware (-B) buffers. If you get a
message from Csound's ALSA driver that looks like the following:

ALSA: -B 8192 not allowed on this device; use 7526 instead

there is a good chance that you may be using dmix. If you are using dmix, the -b and -B settings of
Csound must be synced the period_size and buffer_size of dmix respectively, using aratio of the sr for
the Csound project to the sample rate that dmix is set up to. The following formula will determine what
settings to use for Csound given the settings of dmix:

(csound_sr/dm x_sanpl e_rate) * dm x_peri od_size
(csound_sr/dmi x_sanple_rate) * dm x_buffer_size

-b
-B

For example, if dmix is set to 48000 sample rate, aperiod_size of 1024, and a buffer_size of 8192, when
running a Csound project with sr=48000, the settings for buffers should be "-b 1024 -B8192". If the
sr=24000, the settings for buffers should be "-b 512 -B4096".

Because of this relationship, if a Csound project's sr does not evenly divide into the sample_rate used by
dmix, then it may be difficult if not imposible to set the correct setting for -b and -B due to rounding er-
rors. It is suggested then that if you are using sample rates different than what your setting is for dmix,
then you may want to configure dmix to have a period_size and buffer_size that can be evenly divided
by the ratio between the csound sr and dmix sample rate. For example, to run a project with sr=16000,
the following dmix setting:

pcm am x {

type dm x

i pc_key 50557

sl ave {
pcm "hw 0, 0"
period_time O
#period_si ze 1024
#buf fer _si ze 8192
period_size 1536
buf fer_size 12288

71

Using Csound

}
}

route ALSA software through pcm am x
pcm !default {

type plug
sl ave. pcm "am x"

with period_size 1536 and buffer_size 12288 will divide nicely by 3 (the ratio of the csound sr to the
dmix sample_rate) to get "-b 512 -B4096" ((16000/48000) * 1536 = 512, (16000/48000) * 12288 =
4096).

Note

For most soundcards that this affects, the default sample rate for the card will be 48000 and
the defaults for dmix will be 1024 and 8192.

Audio Input

Typically the same card will be used for both input and output, so to continue using the foregoing ex-
ample, the flag:

-i adc:hw 0,0

would be added for audio input from Card 0 Device 0. To use the default card employ one of the follow-
ing flags, with the forementioned warning that this will not necessarily work:

-i adc

If you wish to use a different card or device for input, running the following utility from the command
line will provide alist of input devices:

arecord -1

If, by way of an example, you wanted to use a USB audio interface, which is the second "card" in your
system, for output, but wanted to use your internal soundcard, the first card in your setup, for input, you
would put the following flags somewhere useful:

-+rtaudi o=al sa -i adc:hw. 0,0 -0 dac:hw 1,0

If you wanted to use the second device on your USB interface, to send audio to a specific channel, for
instance, you would use the following flags:

-+rtaudio=alsa -i adc:hw. 0,0 -0 dac:hw 1,1

MIDI Input

Csound does not automatically create its own ALSA sequencer port. It creates an ALSA raw midi port
each timeit runs. In order to enable your orchestrato receive MIDI input you can use VirMIDI or MIDI-
Thru, whichever you prefer. Setting up these virtual MIDI portsis atopic that has been covered extens-
ively elsewhere, see The Linux MIDI how-to [http://www.midi-howto.com/]

or browse your distro's documentation or the ALSA documentation for instructions on how to install and

72

http://www.midi-howto.com/

Using Csound

configure either VirMIDI or MIDIThru (seqdummy). Once you have done so run:
anidi -1

for alist of available devices. Typically thiswill look something like the following:

[..]

Device Name

hw:1,0 Virtual Raw MIDI (16 subdevices)
hw:1,1 Virtual Raw MIDI (16 subdevices)
hw:1,2 Virtual Raw MIDI (16 subdevices)
hw:1,3 Virtual Raw MIDI (16 subdevices)
hw:2,0,0 PCR MIDI

hw:2,0,1 PCR 1

In this example, Csound can connect to any of the four available Virtual Raw MIDI ports, where it will
listen for MIDI input. The following flag instructs Csound to listen on the first of these ports:

-+rtmdi=alsa -Mw 1,0

You will then need to connect your hardware or software controller to the port which is hosting your
Csound synthesizer. The simplest way to do thisis using the "aconnect" utility. Run:

aconnect -1li

for alist of available input devices, and:

aconnect -lo

for alist of available output devices (including the port to which Csound has been connected). These
should give something like the following:

#aconnect -li

client O: 'System'’ [type=kernel]
0 Timer '
1'Announce

Connecting To: 15:0

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'VirMIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'virMIDI 1-1 '

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'VirMIDI 1-2 '

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'VirMIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '
2'PCR2 '

#aconnect -lo

73

Using Csound

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'virMIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'VvirMIDI 1-1 '

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'virMIDI 1-2 '

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'virMIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '

In the following example, the USB keyboard which is listed above as client 24 will be connected to a
Csound synthesizer which is listening on the first VirMIDI port. The keyboard has three output ports.
The first (24:0) transmits messages received on the MIDI in port, the second (24:1) transmits keyboard
and controller messages, and the third (24:2) transmits system exclusive messages. The following com-
mand connects the second port of the keyboard to the Csound synthesizer:

aconnect 24:1 20:0

Remember that Csound acts asaraw MIDI device and is not an ALSA sequencer client. This means that
Csound will not appear in MIDI device listings and will not be available for use directly with aconnect,
S0 you must connect to avirtual device (like 'virtual raw MIDI' or 'MIDI through') for persistent connec-
tions, or conect directly to the destination using command line flags.

MIDI Output

Csound can be connected to any device which shows up on the ALSA sequencer list of output ports, ob-
tained by "amidi -I" as above. In order to connect a Csound synthesizer to the MIDI out port of the key-
board listed above, the following flag would be used:

-Chw. 2, 0,0

Scheduling

If you are able to run Csound as the root user, using the "--sched" flag will dramatically improve real-
time performance, when using ALSA, however you may hang your system if you do something stupid.
DO NOT use "--sched" if you are using JACK for audio output. JACK controls scheduling for the audio
applications connected to it, and also tries to run at the highest possible priority. If the "--sched" flag is
used, Csound and JACK will be competing rather than cooperating, resulting in extremely poor perform-
ance.

Using JACK

The simplest way to use the JACK plugin enabling input and output is as follows:

-+rtaudi o=jack -i adc -0 dac

Additionally, there are some command line options specific to JACK:

JACK Command-line Flags

74

Using Csound

-+jack_client=[client_name] The client name used by Csound, defaults to 'csoundS'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts.

-+jack_inportname=[input port Name prefix of Csound JACK input/output ports; the default is
name prefix], - ‘input’ and 'output’. The actua port name is the channel humber
+jack_outportname=[output port appended to the name prefix. Example: with the above default set-
name prefix] tings, a stereo orchestra will create these portsin full duplex oper-

ation:

csound5: i nputl (record left)

csound5: i nput 2 (record right)

csound5: out put 1 (pl ayback left)

csound5: out put 2 (pl ayback right)

-+jack_sleep time=[deeptimein As of Csound version 5.01, this option is deprecated and ignored.
microseconds]

Connecting Csound to other JACK clients

By default, no connections are made (you need to use jack connect, gjackctl, or a similar utility);
however, the plugin can connect to ports specified as -iadc:portname_prefix' or -odac:portname_prefix’,
where portname_prefix is the full name of a port without a channel number, such as 'alsa_pcm:capture '
(for -i adc), or ‘alsa_pcm:playback ' (for -o dac).

Notes on buffer sizes

Audio datais received from and sent to the JACK server by Csound using aring buffer that is controlled
by the -b and -B flags. -B is the total size of the buffer, while -b is the size of a single period. These val-
ues are rounded so that the total size is an integer multiple of, and greater than the period size. The dif-
ference of the Csound buffer and period size must be greater than or equal to the JACK period size.

If both -iadc and -odac are used at the same time, the -b option should be set to an integer multiple of ks-
mps.

An example of buffer settings for low latency on afast system:

jackd -d alsa -P -r 48000 -p 64 -n 4 -zt &
csound -+rtaudio=jack -b 64 -B 256 [...]

with real time scheduling (as root):

jackd -R -P 90 -d alsa -P -r 48000 -p 64 -n -zt &
csound --sched=80, 90, 10 -d - +rtaudi o=j ack —b 64 -B 192 [...]

To improve performance, use ksmps values like 32 and 64.

The sample rate of the orchestra must be the same as that of the JACK server.

Windows

Real-time Audio

Windows users can use either the default PortAudio Realtime module, or the winmm Realtime Audio
Module. The winmm module is a native windows module which provides great stahility, but latency will
usualy be too high for realtime interaction. To activate a realtime module, you can use the -+rtaudio
flag with value of portaudio or winmme. The default value is portaudio, which is activated by default

75

Using Csound

without specifying it.

You aso need to specify the sound device you want to use, and specify that you want to generate real-
time audio ouput instead of soundfile to disk output. To do this, you must use the -odac or -o dac flag,
which tells csound to output to the Digital-to-Analog converters instead of a file. By adding a number
after the flag (e.g. -odac2), you can choose the device number you want. To find out available devicesin
your system, you can use a large out of range number (e.g. -odac99), and csound will report an error,
and list available devices.

When choosing the device number under Portaudio, you are also choosing the driver interface, since
Portaudio supports WinMME, DirectX and ASIO. If you have an ASIO capable interface or an ASIO
driver emulator like ASIO4ALL [http://www.asiodall.com], the device will show multiple times, once
for each driver interface. ASIO will give you the best latency on your system, so if available it should be
your choice for realtime audio output.

Enabling realtime audio input is done using -iadc, which makes csound listen to the realtime audio out-
puts. You can again select the device by its number, and check for available devices using an out of

range number. Note that for input you use 'adc' instead of 'dac’. Make sure you have the appropriate in-
put selected in your soundcard's control panel.

Real-time MIDI
To enable Real-time MIDI on Windows, you can use the -M flag for MIDI input and the -Q flag for

MIDI output. You might need to specify the device number after the flag (e.g. -M2), and again, you can
find the available devices by giving an out of range number.

Csound will use PortMidi as the default MIDI module, but there's also a native winmme module, which
can be activated with the flag:

-+rtmidi=winmme

A typical set of flags to enable Real-time Audio and MIDI 1/0 can look like:

-+rtmidi=winmme -M 1 -Q1 -+rtaudio=portaudio -odac3 -iadc3

Mac

Coming Soon...

Optimizing Audio I/O Latency

To achieve the lowest latency possible without audio break ups, a combination of variables needs to be
tweaked. The final values will be platform and system dependent, and will also depend on the complex-
ity of the audio calculations performed. Y ou need to adjust ksmps in the orchestra, as well as the soft-
ware (-b) and harware buffer (-B) sizes.

Usually the simplest solution is the following:

1. Set ksmpsto avaue with a good tradeoff between quality and performance, without adjusting -B at
all.

76

http://www.asio4all.com

Using Csound

2. Set-bto anegative power of two of thisvalue.

To get the optimal values, start with something you think is going to be too low, ie -1, and then
continue "upwards", -2, -4 and so on, until you stop getting x-runs (glitches). The real value of -b
will be the absolute value of -b * ksmps.

3. Reduce the hardware buffer (-B). Bring it down from the default (1024 on Linux, 4096 on Mac OS
X, 16384 on Windows), halving it each time, until you start to get x-runs (glitches) again. Then
take it back up again until performance is continuous.

This process assumes you have a 16-bit soundcard. If you have a 24-bit soundcard, then -B should be
3/2, or 3 times -b, rather than 2 or 4 times. Csound works with 32-bit floats, or 64-bit doubles whereas
most soundcards are 16 or 24-hit integer. -b is the interna buffer, so it's dealing with the 32 or 64-bit
side of things, whereas -B is the hardware buffer, so it's dealing with the 16 or 24-bit side. The csound
default for floatsis-B = 4 * -b. Thisis a sane value for a 16 bit card. Y ou can usually get away with -B
= 2 * -b, but this is the absolute minimum. For example, if you set -b1024 -B2048, csound will tell you
that:

audi o buffered in 1024 sanpl e-frame bl ocks
writing 4096-byte bl ocks to dac

4096 bytesis 32768 bits. 32768/32 = 1024, our sample-frame size, 1024 * 32/16 = 2048, our buffer size.
Were we to reduce the value of -B, we would need to reduce the value of -b by a corresponding amount
in order to continue to write 16-bit integers to dac. The minimum size of -b is (-B * bitrate)/32. That is
to say that the minimum ratio of -b to -B should be;

e 16-bit: 1:2
e 24-bit: 2:3
e 32-bit: 1:1

While there is no theoretical maximum ratio, it makes no sense to have a very high ratio here, as the
software buffer has to fill the hardware buffer before returning. If the ratio is high, it will take a long
time, defeating the purpose of setting a small value for -b.

The value of -b is something that will need to be varied depending on the complexity of the instrument
you're working with, but because it's intimately related to the value of ksmps, it's better to synchronise it
with ksmps and go from there. One way to do it is to decide how long the release on your envelopes
might need to be at maximum (for desired effect), set the release on all envelopes to maximum, give
yourself a generous value for -b, and then play. If it breaks up, double ksmps, repeat until smooth, then
bring the value of -b down as far as possible.

The value of -B is primarily determined by operating system and soundcard. Figure out (using above
method) how low you can go, and use that value (or one higher for safety). If you have problems you'll
know that it's probably because of an inappropriate value for ksmps, too low avalue for -b, or denormals
(see denorm).

77

Configuring

Once you have either unpacked a binary distribution, or built Csound from sources, you will need to
configure Csound so that it will run properly on your system. Installers usualy perform these steps for
you autmoatically.

On all platforms, make sure the directory or directories containing Csound's plugin libraries are in an
OPCCDEDI R Or OPCCDEDI R64 environment variable depending on the precision of the compiled binary.

The Python opcodes, currently require Python 2.4 which can be downloaded from www.python.org
[http://lwww.python.org] if it is not aready on your system. You can check if it is available by typing
'python’ on a command prompt or DOS window.

Windows

On Windows, make sure the directory or directories (normally the csounds directory) containing the
Csound executables directory are in your PATH variable, or else copy al the executable files to your
Windows syst en82 directory. Depending on your installation method, you might also need to set the
OPCODEDI R and OPCODEDI R64 environment variables. Assuming that the binaries archive is unpacked in
C:\ you can use (otherwise set the paths accordingly):

set OPCODEDI R=C: \ csound5\ pl ugi ns
set OPCODEDI R64=C: \ csound5\ pl ugi ns64
set PATH=%ATH% C:\ csound5

Missing python24.dl|

If you get a pop-up about the missing Python library (python24.dll) and don't need the py-
thon opcodes, just delete csoundS\plugins\py.dil and csoundS\plugins64\py.dil, and the
pop-up about the missing Python library should be gone.

Unix and Linux

On Unix and Linux, either install the Csound program in one of the system bi n directories, typicaly /
usr/local/bin, and the Csound and plugin shared libraries in places like /
usr/local /1i b/ csound/ pl ugi ns OF / usr/ | ocal / | i b/ csound/ pl ugi ns64 and make sure that OPCODEDI R
and OPCCODEDI R64 environment variable are set correctly.

CsoundVST

CsoundV ST requires some additional configuration. On al platforms, CsoundV ST requires that you
have Python installed on your computer. The directory containing the _CsoundvsT shared library and the
CsoundVST. py file must be in your PYTHONPATH environment variable, so that the Python runtime knows
how to load these files.

78

http://www.python.org

Syntax of the Orchestra

The Csound orchestra (.orc) or the <Cslnstruments> section of acsd file, contains:

e A header section, which specifies global options for instrument performance
» Alist of User defined opcodes and instrument blocks containing UDO and instrument definitions.

The orchestra header, instrument blocks, and UDOs contain Orchestra statements. An orchestra state-
ment in Csound has the format:

| abel : result opcode argunentl, argunent2, ... ;conments

The label is optional and identifies the basic statement that follows as the potential target of a go-to op-
eration (see Program Flow Control). A label has no effect on the statement per se.

Depending on their function, some opcodes produce no output, so they have no result value. Others take
no arguments and only produce aresult.

Every orchestra statement must be on a single line, however long lines can be wrapped to a new line us-
ing the '\ character. This character indicates that the next line is part of the current one, this way you can
split aline for easier reading, like this:

a2 oscbnk kcps, 1.0, kfndl, 0.0, 40, 203, 0.1, 0.2, kanfr, kanfr2, 148, \
o, 00 0, 0, O, 0, -1, \
kf num 3, 4

Comments are optional and are for the purpose of letting the user document his orchestra code. Com-
ments begin with a semicolon (;) and extend to the end of the line. Comments can optionally be in C-
style, spanning multiple lineslike this:

/* Anything in here --------
is a comment which can span
several lines --------- */

The remainder (result, opcode, and arguments) form the basic statement. Thisalso is optional, i.e. aline
may have only alabel or comment or be entirely blank. If present, the basic statement must be complete
on oneline, and isterminated by a carriage return and line feed.

The opcode determines the operation to be performed; it usually takes some number of input values (or
arguments, with a maximum value of about 800); and it usually has a result field variable to which it
sends output values at some fixed rate. There are four possible rates:

1. onceonly, at orchestra setup time (effectively a permanent assignment)

2. once at the beginning of each note (at initialization (init) time: i-rate)

3. once every performance-time control loop (perf-time control rate, or k-rate)

4. once each sound sample of every control loop (perf-time audio rate, or a-rate)

79

Syntax of the Orchestra

Orchestra Header Statements

The Orchestra Header contains global information that applies to all instruments and defines aspects of
Csound output. It is sometimes referred to asinstr 0, because it behaves as an instrument, but without k-
or a-rate processing (i.e. only opcodes and instructions that work at i-rate are allowed).

An orchestra header statement operates once only, at orchestra setup time. It is most commonly an as-
signment of some value to a global reserved symbol , e.g. sr = 20000. All orchestra header statements
belong to a pseudo instrument 0, an init pass of which is run prior to all other instruments at score time
0. Any ordinary statement can serve as an orchestra header statement, eg. gifreq = cpspch(8.09)
provided it is an init-time only operation. Statements that are normally placed in an orchestra header are:

o ctrlinit

« ftgen

o kr

e ksmps

* massign
* nchnls

* pgmassign

« pset
* seed
LS

o Strset

A Csound header can look like:

Sr 44100
kr 4410
ksmps = 10
nchnls = 2

massign 1, 10

Instrument and Opcode Block Statements

An instrument block is comprised of ordinary statements that set values, control the logical flow, or in-
voke the various signal processing subroutines that lead to audio output. Statements that define an in-
strument block are:

o instr

* endin

An instrument block looks like this:

instr 1 ;A sinple sine wave oscill ator
aout oscils 10000, 440, O

80

Syntax of the Orchestra

out aout
endi n

Statements that define a user defined opcode (UDO) block are

e opcode
* endop

See the UDO section for more information.

Ordinary Statements

An ordinary statement runs at either init time or performance time or both. Operations which produce a
result formally run at the rate of that result (that is, at init time for i-rate results; at performance time for
k- and arate results), with the sole exception of the init opcode. Most generators and modifiers,
however, produce signals that depend not only on the instantaneous value of their arguments but also on
some preserved internal state. These performance-time units therefore have an implicit init-time com-
ponent to set up that state. The run time of an operation which produces no result is apparent in the op-
code.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic expressions
composed of constants, variables, reserved symbols, value converters, arithmetic operations, and condi-
tional values.

Constants and Variables

constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available continuously and
do not change in value.

variables are named cells containing numbers. They are available continuously and may be updated at
one of the four update rates (setup only, i-rate, k-rate, or a-rate). i- and k-rate variables are scalars (i.e.
they take on only one value at any given time) and are primarily used to store and recall controlling data,
that is, data that changes at the note rate (for i-rate variables) or at the control rate (for k-rate variables).
i- and k-variables are therefore useful for storing note parameter values, pitches, durations, slow-moving
frequencies, vibratos, etc. arate variables, on the other hand, are arrays or vectors of information.
Though renewed on the same perf-time control pass as k-rate variables, these array cells represent a
finer resolution of time by dividing the control period into sample periods (see ksmps). a-rate variables
are used to store and recall data changing at the audio sampling rate (e.g. output signals of oscillators,
filters, etc.).

A further distinction is that between local and global variables. local variables are private to a particular
instrument, and cannot be read from or written into by any other instrument. Their values are preserved,
and they may carry information from pass to pass (e.g. from initiaization time to performance time)
within a single instrument. Local variable names begin with the letter p, i, k, or a. The same local vari-
able name may appear in two or more different instrument blocks without conflict.

global variables are cells that are accessible by all instruments. The names are either like local names
preceded by the letter g, or are specia reserved symbols. Global variables are used for broadcasting gen-
eral values, for communicating between instruments (semaphores), or for sending sound from one in-
strument to another (e.g. mixing prior to reverberation).

given these distinctions, there are eight forms of local and global variables:

81

Syntax of the Orchestra

Table 1. Typesof Variables

Type When Renewable Local Global

reserved symbols permanent -- rsymbol

score pfields i-time p number --

init variables i-time i name gi name

control signals p-time, k-rate k name gk name

audio signals p-time, k-rate (all audio|aname ganame
samplesin ak-pass)

spectral datatypes k-rate W name --

streaming spectral datalk-rate f name of name

types

string variables i-time and optionally k-|S name gS name
rate

where rsymbol is a specia reserved symbol (e.g. sr, kr), number is a positive integer referring to a score
pfield or sequence number, and name is a string of letters, the underscore character, and/or digits with
local or global meaning. As might be apparent, score parameters are local i-rate variables whose values
are copied from the invoking score statement just prior to the init pass through an instrument, while
MIDI controllers are variables which can be updated asynchronously from aMIDI file or MIDI device.

Variable Initialization

Opcodes that let oneinitialize variables are:

e assign
o divz

e init

+ tival

Predefined Math Constant Macros

Csound defines several important math constants as Macros. Y ou can see the full list here.

Expressions

Expressions may be composed to any depth. Each part of an expression is evaluated at its own proper
rate. For instance, if the terms within a sub-expression al change at the control rate or slower, the sub-
expression will be evaluated only at the control rate; that result might then be used in an audio-rate eval-
uation. For example, in

k1 + abs(int(p5) + frac(p5) * 100/12 + sqrt(k1))

82

Syntax of the Orchestra

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note i-time, and the re-
mainder of the expression evaluated every k-period. The whole might occur in a unit generator argument
position, or be part of an assignment statement.

Directories and Files

Many generators and the Csound command itself specify filenames to be read from or written to. These
are optionally full pathnames, whose target directory is fully specified. When not a full path, filenames
are sought in several directories in order, depending on their type and on the setting of certain environ-
ment variables. The latter are optional, but they can serve to partition and organize the directories so that
source files can be shared rather than duplicated in several user directories. The environment variables
can define directories for soundfiles SFDIR, sound samples SSDIR, sound analysis SADIR, and include
filesfor orchestraand score files INCDIR.

In Csound version 5.00 and later, these environment variables can specify multiple directories as a ; sep-
arated list. If afileisfound in more than one location, the last one has the highest precedence.

The search order is:

1. Soundfiles being written are placed in SFDIR (if it exists), else the current directory.

2. Soundfiles for reading are sought in the current directory. If default paths are not disabled, files will
next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SSDIR and
then SFDIR.

3. Analysis control files for reading are sought in the current directory. If default paths are not dis-
abled, files will next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought
in SADIR.

4. MIDI filesfor reading are sought in the current directory. If default paths are not disabled, files will
next be sought for relative to the CSD/ORC/SCO file. Finaly they will be sought in MFDIR, SS-
DIR and SFDIR.

5. Files of code to be included in orchestra and score files (with #include) are sought first in the cur-
rent directory, then in the same directory as the orchestra or score file (as appropriate), then finally
INCDIR.

Nomenclature

Throughout this document, opcodes are indicated in boldface and their argument and result mnemonics,
when mentioned in the text, are given in italics. Argument names are generally mnemonic (amp, phs),
and the result is usually denoted by the letter r. Both are preceded by a type qudlifier i, k, a, or x (e.g.
kamp, iphs, ar). The prefix i denotes scalar values valid at note init time; prefixes k or a denote control
(scalar) and audio (vector) values, modified and referenced continuously throughout performance (i.e. at
every control period while the instrument is active). Arguments are used at the prefix-listed times; res-
ults are created at their listed times, then remain available for use as inputs elsewhere. With few excep-
tions, argument rates may not exceed the rate of the result. The validity of inputs is defined by the fol-
lowing:

» arguments with prefix i must be valid at init time;
» arguments with prefix k can be either control or init values (which remain valid);

» arguments with prefix a must be vector inputs;

83

Syntax of the Orchestra

» arguments with prefix x may be either vector or scalar (the compiler will distinguish).

All arguments, unless otherwise stated, can be expressions whose results conform to the above. Most op-
codes (such as linen and oscil) can be used in more than one mode, which one being determined by the
prefix of the result symbol.

Thoughout this manual, the term "opcode” is used to indicate a command that usually produces an a-, k-,

or i-rate output, and always forms the basis of a complete Csound orchestra statement. Items such as"+"
or"sin(x)" or,"(a>=b?c: d)" arecaled "operators."

Macros

Orchestra macros work like C preprocessor macros, and replace the content of the macro in the orchestra
before it is compiled. The opcodes one can use to create, call, or undefine orchestra macros are:

* #define
+ $NAME
o Hifdef

o #ifndef
+ #end

o #else

» #include
o #undef

More information and examples on the usage of orchestra macros can be found in the entry for #define.

These opcodes refer to orchestra macros, for score macros refer to Score Macros.

Named Instruments

As arecent addition to the orchestra syntax, instruments can be defined with string names. Such named
instruments are callable from the score, and are supported by a number of opcodes.

Syntax

A named instrument is declared as shown below:

instr Name[, Name2[, Name3[, ...]]]
[...1]

endi n

A single instrument can have any number of names, and any of these names can be used to call the in-
strument. Additionally, it is possible to use numbers as name, denoting a standard numbered instrument,
so the following declaration is also valid:

Syntax of the Orchestra

instr 100, Nanel, 99, Nane2, 1, 2, 3

An instrument name may consist of any number of letters, digits, and the underscore () character,
however, the first character must not be a digit. Optionally, the instrument name may be prefixed with
the '+' character (see below), for example:

instr +Reverb

For al instrument names, a number is automatically assigned (note: if the message level (-m) is not zero,
these numbers are printed to the console during orchestra compilation), following these rules:

e any unused instrument numbers are taken up in ascending order, starting from 1

» the numbers are assigned in the order of instrument name definition, so named instruments that are
defined later will always have a higher number (except if the '+' modifier is used)

» if the instrument name was prefixed with '+, the assigned number will be higher than that of any of
the (both numbered and named) other instruments without '+'. If there are multiple '+' instruments,
the numbering of these will follow the order of definition, according to the above rule.

Using '+' is mainly useful for global output or effect instruments, that must be performed after the
other instruments.

An example for instrument numbers:
instr 1, 2
endi n

instr Instrl
endin

instr +Effectl, Instr2
endin

instr 100, Instr3, +Effect2, Instr4, 5
endin

In this example, the instrument numbers are assigned as follows:

Instrl: 3
Effectl: 101
Instr2: 4
Instr3. 6
Ef fect2: 102
Instr4. 7

Using Named Instruments
Named instruments can be called by using the name in double quotes as the instrument number (note:

the '+' character should be omitted). Currently (as of Csound 4.22.4), named instruments are supported
by:

» 'i"and'q' score events

Notes

85

Syntax of the Orchestra

1. in score files, unmatched quotes, and spaces or other invalid characters in the
strings should be avoided, otherwise (at least with current version) unpredictable
behavior may occur (this problem does not exist for -L line events). However,
there is checking for undefined instruments, and in such cases, the event is simply
ignored with awarning.

2. Stand-alone utilities (score sort and extract) do not support named instruments. It
is still possible to sort such scores by using the -t0 option of the main Csound ex-
ecutable)

e red-timelineevents(-L)

» event, schedkwhen, subinstr, and subinstrinit opcodes

e massign, pgmassign, prealloc, and mute opcodes

Additionaly, there is a new opcode (nstrnum) that returns the number of a named instrument:

insno nstrnum "nane"

With the above example, nstrnum "Effect1" would return 101. If an instrument with the specified name
does not exist, an init error occurs, and -1 is returned.

Example
- orchestra ----
Sr = 44100
ksnps = 10
nchnls = 1
preal | oc "Si neWave", 20
prealloc "M Dl Si neWave", 20
massign 1, "M DI Si neWave"
gaQut Send init 0
instr +Qutputlnstr
out gaCut Send
cl ear gaCut Send
endi n
instr SineWave
al oscils p4, p5, O
vincr gaQut Send, al
endi n
instr M D Si neWave
i amp vel oc
i note not num
i cps = cpsoct(inote / 12 + 3)
al oscils iamp * 100, icps, O
vi ncr gaQut Send, al
endi n
- score ----

86

Syntax of the Orchestra

i "SineWave" 0 2 12000 440
i "Qutputlnstr" 0 3
e

Author

Istvan Varga

2002

User Defined Opcodes (UDO)

Csound allows the definition of opcodes inside the orchestra header using the opcodes opcode and en-
dop. The defined opcode may run with a different number of control samples (ksmps) using setksmps.

To connect inputs and outputs for the UDO, use xin and xout.

An UDO lookslike this:

opcode Lowpass, a, akk

setksmps 1 ; need sr=kr
ain, kal, ka2 xin ; read input paraneters
aout init O ; initiallze output
aout = ain*kal + aout*ka2 ; sinple tone-like filter
xout aout ; write output
endop

This UDO called Lowpass takes 3 inputs (the first is a-rate, and the next two are k-rate), and delivers 1
a-rate output. Notice the use of xin to receive inputs and xout to deliver outputs. Also note the use of
setksmps, which is needed for the filter to work properly.

To use this UDO within an instrument, you would do something like:

afiltered Lowpass asource, kvaluel, kval ue2

See the entry for opcode for detailed information on UDO definition.

You can find many ready made UDO's (or contribute your own) a Csounds.com
[http://www.csounds.com/]'s User Defined Opcode Database [http://www.csounds.com/udo/].

87

http://www.csounds.com/
http://www.csounds.com/udo/

The Standard Numeric Score
Preprocessing of Standard Scores

Carry

A Score (a collection of score statements) is divided into time-ordered sections by the s statement. Be-
fore being read by the orchestra, a score is preprocessed one section at a time. Each section is normally
processed by 3 routines: Carry, Tempo, and Sort.

Within a group of consecutive i statements whose p1 whole numbers correspond, any pfield left empty
will take its value from the same pfield of the preceding statement. An empty pfield can be denoted by a
single point (.) delimited by spaces. No point is required after the last nonempty pfield. The output of
Carry preprocessing will show the carried values explicitly. The Carry Feature is not affected by inter-
vening comments or blank lines; it is turned off only by a non- i statement or by an i statement with un-
like p1 whole number.

Three additional features are available for p2 alone: +, M+ x, and - x. The symbol + in p2 will be given
the value of p2 + p3 from the preceding i statement. This enables note action times to be automatically
determined from the sum of preceding durations. The + symbol can itself be carried. It islega only in
p2. E.g.: the statements

i1 o .5 100

i . +

|

will result in

i1 o 5 100
i1 .5 5 100
i1 1 5 100

The symbols ~+ x and - x determine the current p2 by adding or subtracting, respectively, the value of x
from the preceding p2. These may be used in p2 only.

The Carry feature should be used liberally. Its use, especially in large scores, can greatly reduce input
typing and will simplify later changes.

Tempo

Sort

This operation time warps a score section according to the information in at statement. The tempo oper-
ation converts p2 (and, for i statements, p3) from original beats into real seconds, since those are the
units required by the orchestra. After time warping, score files will be seen to have orchestra-readable
format demonstrated by the following:

i pl p2beats p2seconds p3beats p3seconds p4 p5

This routine sorts al action-time statements into chronological order by p2 value. It also sorts coincident

88

The Standard Numeric Score

events into precedence order. Whenever an f statement and an i statement have the same p2 value, the f
statement will precede. Whenever two or more i statements have the same p2 value, they will be sorted
into ascending pl value order. If they also have the same pl value, they will be sorted into ascending p3
value order. Score sorting is done section by section (see s statement). Automatic sorting implies that
score statements may appear in any order within a section.

N.B.

The operations Carry, Tempo and Sort are combined in a 3-phase single pass over a score file, to pro-
duce anew file in orchestra-readable format (see the Tempo example). Processing can be invoked either
explicitly by the Scsort command, or implicitly by Csound which processes the score before calling the
orchestra. Source-format files and orchestra-readable files are both in ASCII character form, and may be
either perused or further modified by standard text editors. User-written routines can be used to modify
score files before or after the above processes, provided the final orchestra-readable statement format is
not violated. Sections of different formats can be sequentially batched; and sections of like format can
be merged for automatic sorting.

Score Statements

The statements used in scores are:

e a- Advance scoretime by a specified amount

* b- Resetsthe clock

+ e-Marksthe end of the last section of the score

» f- CausesaGEN subroutine to place values in a stored function table
e i-Makesaninstrument active at a specific time and for a certain duration
* m- Setsanamed mark in the score

e n- Repeatsasection

* (- Usedto quiet an instrument

e r- Startsarepeated section

* s- Markstheend of asection

e t- Setsthetempo

» V- Providesfor localy variable time warping of score events

e X- Skip therest of the current section

Next-P and Previous-P Symbols

At the close of any of the operations Carry, Tempo, and Sort, three additional score features are inter-
preted during file writeout: next-p, previous-p, and ramping.

i statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced by the
appropriate pfield value found on the next i statement (or previousi statement) that has the same p1. For
example, the symbol np7 will be replaced by the value found in p7 of the next note that is to be played

89

The Standard Numeric Score

by this instrument. np and pp symbols are recursive and can reference other np and pp symbols which
can reference others, etc. References must eventually terminate in a real number or a ramp symbol.
Closed loop references should be avoided. np and pp symbols areillegal in p1, p2 and p3 (although they
may reference these). np and pp symbols may be Carried. np and pp references cannot cross a Section
boundary. Any forward or backward reference to a non-existent note-statement will be given the value
zero.

E.g.: the statements

il 0 1 10 np4 pp5
il 1 1 20

il 1 1 30

will result in

il 0 1 10 20 0
il 1 1 20 30 20
i1 2 1 30 O 30

np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it to glis-
sando or crescendo, for instance, toward the pitch or dynamic of some future event (which may or may
not be immediately adjacent). Note that while the Carry feature will propagate np and pp through unsor-
ted statements, the operation that interprets these symbols is acting on a time-warped and fully sorted
version of the score.

Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear interpolation
of atime-based ramp. Ramps are anchored at each end by the first real number found in the same pfield
of apreceding and following note played by the same instrument. E.g.: the statements

100
<
<

400
<

0

RPRRRRE
OhWNRO
RPRRRRE

will result in

100
200
300
400
200

RPRRRRE
OhWNRO
RPRRRRE

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol (although
they may be referenced by these). Ramp symbols are illegal in pl, p2 and p3. Ramp symbols may be
Carried. Note, however, that while the Carry feature will propagate ramp symbols through unsorted
statements, the operation that interprets these symbols is acting on a time-warped and fully sorted ver-
sion of the score. In fact, time-based linear interpolation is based on warped score-time, so that a ramp
which spans a group of accelerating notes will remain linear with respect to strict chronological time.

90

The Standard Numeric Score

Starting with Csound version 3.52, using the symbols (or) will result in an exponential interpolation
ramp, similar to expon. The symbols{ and } to define an exponential ramp have been deprecated. Using
the symbol ~ will result in uniform, random distribution between the first and last values of the ramp.
Use of these functions must follow the same rules as the linear ramp function.

Score Macros

Description

Macros are textual replacements which are made in the score as it is being presented to the system. The
macro system in Csound is a very simple one, and uses the characters # and $ to define and call macros.
This can can alow for simpler score writing, and provide an elementary alternative to full score genera-
tion systems.The score macro system is similar to, but independent of, the macro system in the orchestra
language.

#define NAME -- defines a ssmple macro. The name of the macro must begin with aletter and can con-
sist of any combination of |etters and numbers. Case is significant. Thisform islimiting, in that the vari-
able names are fixed. More flexibility can be obtained by using a macro with arguments, described be-
low.

#define NAME(a' b' ¢') -- defines a macro with arguments. This can be used in more complex situations.
The name of the macro must begin with aletter and can consist of any combination of |etters and num-
bers. Within the replacement text, the arguments can be substituted by the form: $A. In fact, the imple-
mentation defines the arguments as simple macros. There may be up to 5 arguments, and the names may
be any choice of letters. Remember that case is significant in macro names.

$NAME. -- calls a defined macro. To use a macro, the name is used following a $ character. The nameis
terminated by the first character which is neither aletter nor anumber. If it is necessary for the name not
to terminate with a space, a period, which will be ignored, can be used to terminate the name. The string,
$NAME., is replaced by the replacement text from the definition. The replacement text can also include
macro calls.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with
#undef NAME.

Syntax

#define NAME # repl acenent text #
#define NAME(a' b' c') # replacenent text #
SNAME.

#undef NAME

Initialization
replacement text # -- The replacement text is any character string (not containing a #) and can extend

over mutliple lines. The replacement text is enclosed within the # characters, which ensure that addition-
a characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They

91

The Standard Numeric Score

take no notice of any meaning, so spaces are significant. This is why, unlike the C programming lan-
guage, the definition has the replacement text surrounded by # characters. Used carefully, this simple
macro system is a powerful concept, but it can be abused.

Another Use For Macros. When writing a complex score it is sometimes all too easy to forget to what
the various instrument numbers refer. One can use macros to give names to the numbers. For example

#define Flute #il#
#defi ne Whoop #i2#

$Flute. 0 10 4000 440
$Whoop. 5 1

Examples

Example 1. Smple Macro

A note-event has a set of p-fields which are repeated:

ine ARGS # 1.01 2.33 138#
8.00 1000 $ARGS
8.01 1500 $ARGS
8.02 1200 $ARGS
8.03 1000 $ARGS

Thiswill get expanded before sorting into:

00 1000 1.01 2.33 138
01 1500 1.01 2.33 138
02 1200 1.01 2.33 138
03 1000 1.01 2.33 138

This can save typing, and is makes revisions easier. If there were two sets of p-fields one could have a
second macro (thereisno real limit on the number of macros one can define).

#define ARGSL # 1.01 2.33 138#
#define ARGS2 # 1.41 10.33 1.00#
il 01 8.00 1000 $ARGS1

101 8.01 1500 $ARGS2

101 8.02 1200 $ARGSL

101 8.03 1000 $ARGS2

Example 2. Macroswith arguments

ine ARG(A) # 2.345 1.03 $A 234.9#
8.00 1000 $ARG 2.0)
8.01 1200 $ARG 3.0)

92

The Standard Numeric Score

which expandsto

00 1000 2. 345 1.03

1 8. 234.9
1 8.01 1200 2. 345 1.03

234.9

wn

Credits

Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK

April, 1998 (New in Csound version 3.48)

Multiple File Score

Description

Using the score in more than onefile.

Syntax

#i ncl ude "fil enane”

Performance

It is sometimes convenient to have the score in more than one file. This use is supported by the #include
facility which is part of the macro system. A line containing the text

#i ncl ude "fil enane”

where the character " can be replaced by any suitable character. For most uses the double quote symbol
will probably be the most convenient. The file name can include afull path.

This takes input from the named file until it ends, when input reverts to the previous input. Thereis cur-
rently alimit of 20 on the depth of included files and macros.

A suggested use of #include would be to define a set of macros which are part of the composer's style. It
could also be used to provide repeated sections.

s

#i ncl ude :sectionl
; Repeat that

s

#i ncl ude :sectionl

Alternative methods of doing repeats, use the r statement, m statement, and n statement.

93

The Standard Numeric Score

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

Thanks to Luis Jure for pointing out the incorrect syntax in multiple file include statement.

Evaluation of Expressions

In earlier versions of Csound the numbers presented in a score were used as given. There are occasions
when some simple evaluation would be easier. This need is increased when there are macros. To assist
in this area the syntax of an arithmetic expressions within square brackets [] has been introduced. Ex-
pressions built from the operations +, -, *, /, %, and ” are alowed, together with grouping with (). The
expressions can include numbers, and naturally macros whose values are numeric or arithmetic strings.
All calculations are made in floating point numbers. Note that unary minusis not yet supported.

New in Csound version 3.56 are @x (next power-of-two greater than or equal to X) and @@x (next
power-of-two-plus-one greater than or equa to X).

Example
r3 CNT
il 0 [0.3*S$CNT.]
il + [($CNT./3)+0.2]

As the three copies of the section have the macro $CNT. with the different values of 1, 2 and 3, this ex-
pands to

.3
3 0.533333

6
6 0.866667

N
©
©

oo oo oo

9 1.2

D= =W ——un——0u0n

This is an extreme form, but the evaluation system can be used to ensure that repeated sections are
subtly different.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

94

The Standard Numeric Score

Bath, UK

April, 1998 (New in Csound version 3.48)

95

Front Ends

Here's a (far from complete) list of front-ends available for Csound.

Csound5GUI

Csound5GUI is a cross-platform, versatile GUI which is part of the standard Csound distribution. It im-
plements most configuration features of Csound.

CSDplayer

Thisisasimple java program to play csd files. It isincluded in the standard distribution.

Winsound

Also part of the main Csound tree (though not available in al distributions), Winsound is cross-platform
FLTK port of Barry Vercoe's original front-end for csound.

WinXoundPro

A convenient front-end for windows with syntax highlighting. You can get it at the WinXsound Front
Page [http://www.ibiart.it/winxound/index.html].

Csound Editor

A convenient front-end for windows with syntax highlighting. You can get it at the Flavio Tordini's
Home Page [http://flavio.tordini.org/csound-editor/].

MacCsound

More than a front-end for the Mac at MacCsound Page [http://www.csounds.com/matt/MacCsound/].

Cabel

Cabel isagraphical user interface for building csound instruments by patching modules similar to mod-
ular synthesizers. Cross-platform, written in Python. At http://cabel .sourceforge.net/.

Blue

Composition oriented front-end written in Java. It'sinterface is much like adigital multitrack, but differs
in that there timelines within timelines (polyObjects). This allows for a compositional organization in
time that seems to me to be very intuitive, informative, and flexible. Get it at: Blue Home Page
[http://csounds.com/stevenyi/blue/].

CsoundVST

CsoundV ST is a multi-function front end for Csound, based on the Csound API. CsoundV ST runs as a
stand-alone graphical user interface to Csound, or asa VST plugin in hosts such as the Cubase audio se-
guencer. CsoundV ST provides both a C++ and a Python APl to Csound, and to a set of classes for al-
gorithmic composition. CsoundV ST is part of the main csound source tree, and is contained in some

96

http://www.ibiart.it/winxound/index.html
http://www.ibiart.it/winxound/index.html
http://flavio.tordini.org/csound-editor/
http://flavio.tordini.org/csound-editor/
http://www.csounds.com/matt/MacCsound/
http://cabel.sourceforge.net/
http://csounds.com/stevenyi/blue/

Front Ends

standard distributions.

CsoundV ST contains a built-in Python interpreter. With Python, the user can generate a score, import a
MIDI file, process notes, load and run a Csound orchestra, and in general do anything that can be done
either with Csound or in Python.

Standalone

To run CsoundV ST as a stand-alone front end to Csound, execute CsoundV ST. When the program has
loaded, you will see a graphical user interface with a row of buttons aong the top. Click on the Open...
buttonto load a. csd file. You can also click on the Open... button and load a.. or ¢ file, then click on the
Import... button to add a. sco file. You can edit the Csound command, the orchestrafile, or the scorefile
in the respective tabs of the user interface. When all is satisfactory, click on the Perform button to run
Csound. Y ou can stop a performance at any time by clicking on the Sop button.

Python Scripting

You can use CsoundV ST as a Python extension module. In fact, you can do this either in a standard Py-
thon interpreter, such as Python command line or the Idle Python GUI, or in CsoundV ST itself in Py-
thon mode.

To use CsoundV ST in astandard Python interpreter, import CsoundV ST.

i mport CsoundVST

The CsoundV ST module automatically creates an instance of CppSound named csound, which provides
an object-oriented interface to the Csound API. In a standard Python interpreter, you can load a Csound
. csd fileand perform it like this:

C.\ Docunents and Settings\ nkg>python

Pyt hon 2.3.3 (#51, Dec 18 2003, 20:22:39) [MSC v.1200 32 bit (Intel)] on w n32
Type "hel p", "copyright", "credits" or "license" for nore information

>>> jnport CsoundVST

>>> csound. | oad("c:/ projects/csound5/ exanpl es/ trapped. csd")

1

>>> csound. export For Per f or mance()

1

>>> csound. perfornm()

BEGAN CppSound: : perform(5, 988ee0)...
BEGAN CppSound: : conpil e(5, 988ee0). ..
Usi ng default | anguage

0dBFS | evel = 32767.0

Csound version 5.00 beta (float sanples) Jun 7 2004
i bsndfile-1.0.10preb

orchname: tenp.orc

scorenane: tenp.sco

orch conpiler

398 lines read

instr 1
instr 2
instr 3
instr 4
instr 5
instr 6
instr 7
instr 8
instr 9
instr 10
instr 11
instr 12
instr 13
instr 98
instr 99
sorting score ...
done

Csound version 5.00 beta (float sanples) Jun 6 2004

97

Front Ends

di spl ays suppressed

0dBFS | evel = 32767.0

orch now | oaded

audi o buffered in 16384 sanpl e-frame bl ocks
SFDI R undefined. wusing current directory
witing 131072-byte bl ks of shorts to test.wav
VWAV

SECTI ON 1

ENDED CppSound: : conpi | e

ftable
ftable
ftable
ftabl e
ftabl e
ftabl e
ftable
ftable
ftable
ftable 10

ftable 11:

ftable 12:

ftable 13

ftable 14

ftable 15:

ftable 16:

ftable 17:

ftable 18

ftable 19:

ftable 20

ftable 21:

ftable 22:

new alloc for instr 1

B 0.000 .. 1.000 T 1.000 TT 1.000 M 32.7 0.0
new alloc for instr 1

B 1.000 .. 3.600 T 3.600 TT 3.600 M 207.6 0.1

CRNOAN AWM

B 93.940 .. 94.418 T 98.799 TT1281.799 M 477.6 85.0
B 94.418 ..100.000 T107.172 TT290. 172 M 118.9 11.5
end of section 4 sect peak anps: 25950.8 26877.4
inactive allocs returned to freespace

end of score. overall anps: 32204.8 31469.6
overal |l sanples out of range: 0 0

0 errors in performance

782 131072-byte soundbl ks of shorts witten to test.wav WAV
El apsed time = 13.469000 seconds

ENDED CppSound: : per f orm

1

>>>

To use CsoundV ST itself as your Python interpreter, click on the CsoundV ST Settings tab, and select
the Python check box in the Csound performance mode box. Do not create a new CppSound object; you
must use the builtin csound object in the CsoundV ST module.

The koch. py script shows how to use Python to do algorithmic composition for Csound. Y ou can use

Python triple-quoted string literals to hold your Csound files right in your script, and assign them to
Csound:

csound. set Orchestra('''sr = 44100

kr = 441

ksmps = 100
nchnls = 2
Odbfs = .1

instr 1,2,3,4,5 ; FluidSynth General MD

I'; I NITI ALI ZATI ON

; Channel, bank, and program determine the preset, that is, the actual sound
i channel = pl

i program = p6

i key = p4
ivelocity = p5 + 12
ijunk6 = p6
ijunk? = p7

; AUDI O

i status = 144

98

Front Ends

print i program istatus, ichannel, ikey, ivelocityaleft, aright
fluid "c:/ projects/csound5/ sanpl es/ Vi nt ageDr eansWaves-v2. sf2", \\
i program istatus, ichannel, ikey, ivelocity, 1

outs aleft, arightendin''")

csound. set Command(" csound --opcode-Ilib=c:/projects/csound5/fluid.dIl \\
-RwWifo ./koch.wav ./tenp.orc ./tenp.sco")

csound. export For Per f or mance()

csound. perform()

To run your script in Csound VST, click on the Perform button.

VST Plugin

The following instructions are for Cubase SX. You would follow roughly similar procedures in other
hosts.

Use the Devices menu, Plug-In Information dialog, VST Plug-Ins tab, Shared VST Plug-ins Folder text
field to add your csounds directory to Cubase's plugin path. Y ou can have multiple directories separated
by semicolons.

Quit Cubase, and start it again.

Use the File menu, New Project dialog to create a new song.

Use the Project menu, Add Track submenu, to add anew MIDI track.

Use the pencil tool to draw a Part on the track a few measures long. Write some music in the Part using
the Event editor or the Score editor.

Use the Devices menu (or the F11 key) to open the VST Instruments dialog.
Click on one of the No VST Instrument labels, and select _CsoundVST from the list that pops up.
Click on the e (for edit) button to open the_CsoundVST dialog.

On the Settings page, check the Instrument box in the VST Plugin group, and the Classic box in the
Csound performance mode group. Then click on the Apply button.

Click on the Open button to bring up the file selector dialog. Navigate to a directory containing a
Csound csd file suitable for MIDI performance, such as csound/ CsoundVST/ exanpl es/ CsoundVST. csd.

Click on the OK button to load the file. You can also open and import a suitable . orc and . sco file as
described above.

In any event, the command line in the Classic Csound command line text box must specify -
+rtmdi=nul| - M, and should read something like this:

csound -f -h -+rtmdi=null -M) -d -n -n¥ tenp.orc tenp.sco

Click on the VST Instruments dialog's on/off button to turn it on. This should compile the Csound or-
chestra. Note: If you don't compile the orchestra, you won't be able to assign the plugin to a track.

In the Cubase Track Inspector, click on the out: Not Assigned label and select _CsoundVST from the list
that pops up.

On the ruler at the top of the Arrangement window, select the loop end point and drag it to the end of
your part, then click on the loop button to enable looping.

Click on the play button on the Transport bar. Y ou should hear your music played by CsoundV ST.

99

Front Ends

Try assigning your track to different channels; a different Csound instrument will perform each channel.

When you save your song, your Csound orchestra will be saved as part of the song and re-loaded when
you re-load the song.

You can click on the Orchestra tab and edit your Csound instruments while CsoundV ST is playing. To
hear your changes, just click on the CsoundV ST Perform button to recompile the orchestra.

You can assign up to 16 channels to a single CsoundV ST plugin. However, you can't have more than
one CsoundV ST plugin in the same song!

100

TclCsound

TclCsound was introduced to provide a simple scripting interface to Csound. Tcl is a ssimple language
that is easy to extend and provide nice facilities such as easy file access and TCP networking. With its
Tk component, it can also handle a graphic and event interface. TclCsound provides three ‘ points of
contact' with Tcl:

1. acsound-aware tcl interpreter (cstclsh)
2. acsound-aware windowing shell (cswish)

3. acsound commands module for Tcl/Tk (tclcsound dynamic lib)

The Tcl interpreter: cstclsh

With cstclsh, it is possible to have interactive control over a csound performance. The command starts
an interactive shell, which holds an instance of Csound. A number of commands can then be used to
control it. For instance, the following command can compile csound code and load it in memory ready
for performance:

csConpi |l e -odac orchestra score -nD

Once thisis done, performance can be started in two ways: using csPlay or csPerform . The command

csPl ay

will start the Csound performance in a separate thread and return to the cstclsh prompt. A number of
commands can then be used to control Csound. For instance,

csPause

will pause performance; and

csRewi nd

will rewind to the beginning of the note-list. The csNote, csTable and csEvent commands can be used to
add Csound score events to the performance, on-the-fly. The csPerform command, as opposed to csPlay
, Will not launch a separate thread, but will run Csound in the same thread, returning only when the per-
formance is finished. A variety of other commands exist, providing full control of Csound.

Cswish: the windowing shell

With Cswish, Tk widgets and commands can be used to provide graphical interface and event handling.
Aswith cstclsh, running the cswish command also opens an interactive shell. For instance, the following
commands can be used to create a transport control panel for Csound:

frame .fr

button .fr.play -text play -conmand csPl ay
button .fr.pause -text pause -conmmand csPause
button .fr.rew -text rew -conmmand csRew nd
pack .fr .fr.play .fr.pause .fr.rew

Similarly, it is possible to bind keys to commands so that the computer keyboard can be used to play
Csound.

101

TclCsound

Particularly useful are the control channel commands that TclCsound provides. For instance, named 10
channels can be registered with TclCsound and these can be used with the invalue, outvalue opcodes. In
addition, the Csound API also provides a complete software bus for audio, control and string channels. It
is possible in TclCsound to access control and string bus channels (the audio bus is not implemented, as
Tcl is not able to handle such data). With these TclCsound commands, Tk widgets can be easily connec-
ted to synthesis parameters.

A Csound server

In Tcl, setting up TCP network connectionsis very simple. With afew lines of code a csound server can
be built. This can accept connections from the local machine or from remote clients. Not only Tcl/Tk
clients can send commands to it, but TCP connections can be made from other sofware, such as, for in-
stance, Pure Data (PD). A Tcl script that can be run under the standard tclsh interpreter is shown below.
It uses the Tclcsound module, adynamic library that adds the Csound API commandsto Tcl.

|l oad tcl csound. so

#(OSX: tclcsound. dylib, Wndows: tclcsound.dll)
| oad tclcsound. so Tcl csound

set forever 0

This arranges for comands to be eval uated

proc ChanEval { chan client } {

if { [catch { set rtn [eval [gets $chan]]} err] } {
puts "Error: S$err"

} else {

puts $client $rtn

flush $client

}

this arranges for connections to be nade

proc NewChan { chan host port } {
puts "Csound server: connected to $host on port $port ($chan)"”
fileevent $chan readable [list ChanEval $chan $host]

this sets up a server to listen for
connections

set server [socket -server NewChan 40001]

set sinfo [fconfigure $server -socknane]

puts "Csound server: ready for connections on port [lindex $sinfo 2]’
vwai t forever

With the server running, it is then possible to set up clients to control the Csound server. Such clients
can be run from standard Tcl/Tk interpreters, as they do not evaluate the Csound commands themselves.
Here is an example of client connections to a Csound server, using Tcl:

connect to server
set sock [socket |ocal host 40001]

conpil e Csound code
puts $sock "csConpile -odac orchestra score"
flush $sock

start perfornmance
puts $sock "csPlay"
flush $sock

102

TclCsound

stop perfornmance
puts $sock "csStop"
flush $sock

As mentioned before, it is possible to set up clients using other software systems, such as PD. Such cli-
ents need only to connect to the server (using a netsend object) and send messages to it. The first item of
each message is taken to be a command. Further items can optionally be added to it as arguments to that
command.

A Scripting Environment

With TclCsound, it is possible to transform the popular text editor e-macs into a Csound scripting/per-
forming environment. When in Tcl mode, the editor allows for Tcl expressions to be evaluated by selec-
tion and use of a simple escape sequence (Ctrl-C Ctrl-X). This facility allows the integrated editing and
performance of Csound and Tcl/Tk code.

In Tcl it is possible to write score and orchestra files that can be saved, compiled and run by the same
script, under the e-macs environment. The following example shows a Tcl script that builds a csound in-
strument and then proceeds to run a csound performance. It creates 10 slightly detuned parallel oscillat-
ors, generating sounds similar to those found in Risset's Inharmonique.

| oad tclcsound. so Tcl csound

set up sonme internediary files

set orcfile "tcl.orc"
set scofile "tcl.sco"
set orc [open $orcfile w
set sco [open $scofile W

This Tcl procedure builds an instrunent
proc Makelns { no code } {

gl obal orc sco

puts $orc "instr $no"

puts $orc $code

puts $orc "endin"

Here is the instrunent code
append ins "asuminit 0 \n"
append ins "ifreq = p5 \n"
append ins "ianmp = p4 \n"

for { set i 0} { % <120} { incr i } {
append ins "a$l oscili ianp,
;freq+ifreq*[expr $i * 0.002], 1\n"

for { set i 0} {$ <120} { incr i } {

if { s} {

append ins " + a$i"

} else {

append ins "asum = a$
}

append ins "\nkl linen 1, 0.01, p3, 0.1 \n"

103

TclCsound

append ins "out asuntkl"
build the instrument and a dumy score

Makel ns 1 $ins
puts $sco "f0 10"
cl ose $orc

cl ose $sco

conpile
csConpile $orcfile $scofile -odac -d -nD

set a wavetabl e
csTable 1 0 16384 10 1 .5 .25 .2 .17 .15 .12 .1

send in a sequence of events and performit
for {set i 0} { i <60} { incr i } {

csNote 1 [expr $i * 0.1] .5\

[expr ($i * 10) + 500] [expr 100 + $i * 10]

csPerform

it is possible torun it interactively as
wel |

csNote 1 0 10 1000 200

csPl ay

The use of such facilities as provided by e-macs can emulate an environment not unlike the one found
under the so-called ‘modern synthesis systems, such as SuperCollider (SC). In fact, it is possible to run
Csound in a client-server set-up, which is one of the features of SC3. A major advantage is that Csound
provides about three or four times the number of unit generators found in that language (as well as
providing alower-level approach to signal processing, in fact these are but afew advantages of Csound).

TclCsound as a language wrapper

It is possible to use TclCsound at a dightly lower level, as many of the C API functions have been
wrapped as Tcl commands. For instance it is possible to create a ‘classic' Csound command-line fron-
tend completely written in Tcl. The following script demonstrates this:

#!/usr/local /bin/cstclsh

set result 1
csConpi | eLi st $argv

while { $result =0} {
set result csPerfornKsnps

TclCsound Command Reference

Performance control commands:
csCompile [csound command-ling] : compiles an orc/sco/csd + any options

csCompilelist arglist : compiles an orc/sco/csd + options given asa Tcl list 'arglist'

104

TclCsound

csPerform : plays the score, returning when finished

csPerformKsmps : performs one ksmps block of audio samples, returning when finished
csPerformBuffer : performs one buffersize block of audio samples, returning when finished

csPlay : starts asynchronous performance in a separate thread, returning immediately

csPause : pauses playback

csStop : stops performance and resets csound

csRewind : rewinds the score

csOffset secs: offsets score playback by secs

csGetoffset : returns the score offset in secs

csGetScoreTime : returns the score time in secs

Event commands:

csNote [p-fields] : sendsin ai-statement event

csTable[p-fields] : sendsin af-statement event

csEvent opcode [p-fields] : sendsin a score event defined by ‘opcode’ plus p-fields

csNotelist arglist : sendsin ai-statement event with p-fieldsasaTcl list ‘arglist’

csTableList arglist : sendsin af-statement event with p-fieldsasaTcl list 'arglist'

csEventList arglist : sendsin a score event defined by 'opcode’ plus p-fieldsasaTcl list 'arglist’
Invalue, outvalue, pvsin, pvsout control and string channel commands:

cslnChannel name: registers a csound inval ue channel

csOutChannel name : registers a csound outvalue channel and creates tcl global variable 'name
cslnValue channel value : setsthe value of a csound invalue channel

csOutValue channel : returns the value of a csound outval ue channel

csPvsin number [size olaps wsize wtype]: registers a pvs in bus channel, optionaly initialising fsig
values for fftsize to 'size' (default:1024), overlaps to 'olaps (def.: size/4), window size to 'wsize' (def.:
size) and window type to ‘wtype' (def.: 1, Hanning window, see manual page for pvsanal). Works with
pvsin opcade (PVS_AMP_FREQ format only).

csPvsOut number [size olaps wsize wtype]: registers a pvs out bus channel. Works with opcode pvsout
(PVS_AMP_FREQ format only).

csPvslnSet channel bin amp freq: setsthe amp and freq of abin of the pvsin channel number.

csPvsOutGet channel bin [isFreq]: returns the amp or freq of a bin of the pvs out channel number. The
optional argument 'isFreq’ (default: 0) controls whether the returned value is the bin amp (0) or freq (1).

csSetControlChannel channd value : sets the value of control channel 'channel’, creating it if it does
not exist

105

TclCsound

csGetControlChannel channel : returns the value of control channel 'channel’; creates the channdl it if
it does not exist

csSetStringChannd channel string : sets the string channel 'channel’, creating it if it does not exist

csGetStringChannel channel : returns the string in channel ‘channel’; creates the channel it if it does
not exist

M essage commands.

csM essageOutput var: appends all csound messages to the tcl variable var.

Table commands:

csGetTableSizeftn : returnsthe size of function table ftn (-1 if non-existent)

csSetTable ftn index value : setsthe value of position 'index' to 'value' in function table 'ftn'
csGetTable ftn index : returns the value of position 'index' in function table 'ftn'
Environment variable commands:

csOpcodedir opcodedir : sets the opcode directory

csSetenv envvar value: sets any environment variable (eg. SFDIR, SADIR)

106

Building Csound

Csound has become a complex project and can involve many dependencies. Unless you are a Csound
developer or need to develop Csound plugins, you should try to use one of the precompiled distributions
from http://www.sourceforge.net/projects/csound.

The latest Csound source code is available through the Concurrent Versions System (CVS)(ht-
tp://www.cvshome.org). To download Csound sources using CV'S, run the following commands:

cvs -d: pserver:anonynmous@sound. cvs. sour cef orge. net:/cvsroot/csound | ogin

cvs -z3 -d: pserver:anonynous@sound. cvs. sour cef orge. net:/cvsroot/csound co -P csound5

Information about accessing the CV S repository may be found in the SourceFForge document Basic In-
troduction to CVSand SourceForge.net (S-.net) Project CVS Services.

If you wish to become a Csound developer, first obtain a SourceForge login, and then apply to John
ffitch at the http://www.sourceforge.net/projects/csound site.

The procedure for building Csound 5 is briefly and incompletely outlined here.

The manual is built using make. Scripts are used for a few other tasks. However, this section focuses on
the main Csound build system, which uses SCons, a Python program that replaces make for cross-
platform configuration and building.

(Alternatively, for building a minimal version of Csound 5 (API library compiled as DLL, plugin librar-
ies, and command line frontend) on Windows with MinGW/MSY' S, you may edit and use Makefi | e-
wi n32, eliminating the dependencies on Python and SCons.)

All Csound 5 SCons builds require the following:

e OnLinux, install gcc.

* On Windows, instal al of MinGW 3.4.2 (3.4.4 does not work) from www.mingw.org
[http:/Aww.mingw.org], or install MSVC. For MSys/MinGW, first install MSys, for example into /
msys. Then install MinGW, by installing all without exception of the binary packages in the "Cur-
rent” section of the download page at http://www.mingw.org/download.shtml#hdr2, in the order lis-
ted, for exampleinto

/ meys/ 1. 0/ mi ngw

. Then edit the

/ meys/ 1.0/ etc/fstab

file so that it tells M Sys where to find MinGW, for example using the line
/ msys/ 1. 0/ mi ngw / m ngw

. Then, to open a shell in which to compile Csound, run the /msys/1.0/msys.bat script.
» OnOSX, instal the latest X Code development system.

* Install Python from http://www.python.org. Note that on Windows, if you have installed both
MinGW and MSVC, it is best to use batch files to set up a separate environment for each compiler
that does not refer to any header, library, DLL, or executable of the other compiler. On Windows,
with Python 2.4 and later, Csound will link directly with the Python DLL. Earlier versions of the Py-
thon DLL will require a MinGW import library that the Csound build system should create.

107

http://www.sourceforge.net/projects/csound
http://www.cvshome.org
http://www.cvshome.org
http://www.sourceforge.net/projects/csound
http://www.mingw.org
http://www.mingw.org/download.shtml#hdr2
http://www.python.org

Building Csound

Install the Software Interface and Wrapper Generator (SWIG) for generating Python and Java inter-
faces, from http://www.swig.org.

Install SCons from www.scons.org [http://www.scons.org]. On Windows, the MSys shell does not
alow the user to execute the scons script directly. Therefore, you need to make sure that Python isin
your Windows executable path, and run the build like thiss $$ python
c:/tool s/ python23/scripts/scons .

Install libdsndfile verson 1.013 or laer from www.mega-nerd.com/libsndfile
[http:/iwww.mega-nerd.com/libsndfil€].

Optional configurations can include the following. In most cases it is best to install the most recent
stable versions.

For GUI widgets, install FLTK 1.1 from www.fltk.org [http://www.fltk.org]. You must configure
and build FLTK with - - enabl e-shared --enabl e-t hreads.

Real-time audio can use ALSA, JACK, CoreAudio, the Windows multimedia library, or PortAudio
(v19-devel branch) from www. portaudio.com/usingcvs.html
[http:/iwww.portaudio.com/usingcvs.html].

Real-time MIDI can use the ALSA raw MIDI interface, Windows multimedia library, or PortMidi
from www.cs.cmu.edu/~music/portmusic [http://www.cs.cmu.edu/~music/portmusic].

CsoundV ST, which is both a standalone GUI, a Python extension module, and a VST plugin form of
Csound with extensive facilities for algorithmic composition, requires FLTK and the boost C++ tem-
plate libraries for random numbers and linear algebra, from http://www.boost.org. The CsoundV ST
Randomclass requires that boost must be later than version 1.32.1.

The fluid opcodes require the Fluidsynth library from http://savannah.nongnu.org/downl oad/fluid.
For Windows, use the prebuilt binaries.

The STK opcodes require STK source code from http://ccrma.stanford.edu/software/stk, copied into
csound5/ Opcodes/ st k.

The Loris opcodes require Loris source code from http://sourceforge.net/projects/loris, copied into
csound5/ Opcodes/ Lori s.

The OSC opcodes require the latest version of the liblo library from http://plugin.org.uk/liblo. On
Windows, liblo requires a Windows version of the POSIX thread library (pthreads) which is avail-
able from http://sourceware.org/pthreads-win32; copy libpthreadGC2.a to libpthread.a. You may
also need the latest version of autoconf from MinGW.

Executescons - h to discover the current configuration options.

Modify cust om py as required for your installation (usually required on Windows, may not be required
on Linux).

Execute scons with the options you desire.

Set the environment variable oPCODEDI R to the directory where plugin libraries are installed; in the case
of adouble precision build, oPcoDEDI R64 should be set instead. The NSIS installer performs this step.

Toinstall on Linux, execute. /instal | . py Of scons install.

To create a Windows installer, build Csound for double precision samples and including the Loris, STK,

108

http://www.swig.org
http://www.scons.org
http://www.mega-nerd.com/libsndfile
http://www.fltk.org
http://www.portaudio.com/usingcvs.html
http://www.cs.cmu.edu/~music/portmusic
http://www.boost.org
http://savannah.nongnu.org/download/fluid
http://ccrma.stanford.edu/software/stk
http://sourceforge.net/projects/loris
http://plugin.org.uk/liblo
http://sourceware.org/pthreads-win32

Building Csound

py, vstdcs, and Fluidsynth opcodes, build the manual, install the NSIS installer from nsis.sourceforge.net
[http://nsis.sourceforge.net], and run csounds/ i nst al | er/ wi ndows/ csound. nsi .

109

http://nsis.sourceforge.net

Csound Links

Csound's "home page" is maintained by Richard Boulanger at http://csounds.com.

The Csound source code is maintained by John ffitch and others a ht-
tp://www.sourceforge.net/projects/csound. The most recent versions and precompiled packages for most
platforms also can be downloaded here [http://sourceforge.net/project/showfiles.php?group _id=81968].

A Csound mailing list exists to discuss Csound. It is run by John ffitch of Bath University, UK. To have
your name put on the mailing list send an empty message to: csound-subscribe@lists.bath.ac.uk
[mailto:csound-subscribe@lists.bath.ac.uk]. Y ou can aso subscribe to the digest (1 message per day) by
sending an empty email to: csound-digest-subscribe@lists.bath.ac.uk
[mailto:csound-digest-subscribe@lists.bath.ac.uk]. Posts sent to csound@lists.bath.ac.uk
[mailto:csound@lists.bath.ac.uk] go to al subscribed members of the list. You can browse the csound
mailing list archives here [http://agentcities.cs.bath.ac.uk/%7ebwillkie/list_arch.php]

Similarly, the Csound- devel mailing list exists to discuss Csound development. For more information
on this list, go to http://lists.sourceforge.net/lists/listinfo/csound-devel. Posts sent to csound-de-
vel @lists.sourceforge.net [mailto:csound-devel @lists.sourceforge.net] go to al subscribed members of
thelist.

Suspected bugs in the code may be entered using the bug tracking system at the Sourceforge bug tracker
[http://sourceforge.net/tracker/?group_id=81968& atid=564599].

110

http://csounds.com
http://www.sourceforge.net/projects/csound
http://www.sourceforge.net/projects/csound
http://sourceforge.net/project/showfiles.php?group_id=81968
mailto:csound-subscribe@lists.bath.ac.uk
mailto:csound-digest-subscribe@lists.bath.ac.uk
mailto:csound@lists.bath.ac.uk
http://agentcities.cs.bath.ac.uk/%7ebwillkie/list_arch.php
http://lists.sourceforge.net/lists/listinfo/csound-devel
mailto:csound-devel@lists.sourceforge.net
mailto:csound-devel@lists.sourceforge.net
http://sourceforge.net/tracker/?group_id=81968&atid=564599

Part Il. Opcodes Overview

Table of Contents

SIGNEAI GENEIAEOTS ...ttt ettt ettt e e ettt e e et et e e e e et e e e eata e aees 115
Additive Synthesis/ReSYNtNESIScoiiiiiiii e 115
BaSiC OSCHIALOS .. .ceeieeeeeei e 115
Dynamic Spectrum OSCIllatorscovuiiviiieee e 115
L IS 0111 P 116
Granular SYNtNESISccuuiiiiiiie e e 116
Hyper Vectorial SYNthesiScoouuiiiiiii e 117
Linear and Exponential GENEIratorsccoeuuuieeiiiiieeiei e 117
ENVEIOPE GENEIALONSceiieii ettt ettt e e e e ea s 118
Models and EMUIBLIONSooeuniiiiiiiie e 118
PRASOIS e 119
RanNdom (NOISE) GENEYELOISceuueveiiiei e e ee e e e e e e e e e e e e e e e eeanaees 119
Sample Playbackcooouuiiiii 120
011010 | 1] £ P 121
SCANNEA SYNENESIS ...ttt e e 122
TADIE ACCESS ..o 124
Wave Terrain SYNthESISuu i 124
Waveguide Physical MOelingccuuiiviiiiiiicie e 124

Signal INPUL N OULPUL ...ttt e et e e eeeaba e eees 126
File INput @and OULPULcuuneiiiii e 126
SIGNAL TNPUL .ttt aes 126
IS T = I 1 o1 | 126
SOFIWAIE BUS ...ttt e e et e e e et e e e eeba e e aees 127
Printing and Displayvvveeiiiiicie e 127
SOUNd Fil@ QUENTES ... et eees 127

SIgNal MOGITIEIS ..oeeeee ettt e e e e e e e 129
Amplitude Modifiers and DynamiC ProCeSSINGcevueerrnrieinaaeiaaeiiaeeaiaeennns 129
Convolution and MOrphingccoeeiiiiii e 129
5= - P 129
Panning and SpatialiZationcc.viiiiiiiiiie e 130
RS 1= - 1o o 131
SaMpPle LeVEl OPEIEIOISceieveieiiiiii et 132
SIgNAl LIMITEIS .ot e e e 132
SPECIAl EffECtS ..o 133
Standard FIIEErS ...oovviiiii e 133
SPECIAliZEA FilTEr'S .vvieee e 134
WEVEGUITES ...ttt et e 135
Comparators and ACCUMUIBLONSuueieeriieeiiiie ettt e et e et e e e eees 135

INSEFUMENT CONEIOL ...t e e e e e e e e eaas 136
ClOCK CONLIOL ... et 136
ConditioNal VEIUEScoveviieiiii e e 136
Duration Control StAatEMENESuiiiiiiiiieeeiii e 136
FLTK Widgetsand GUI CONtrollerscooouuiiiiiiiiieiiiii e 136
FLTK CONAINELS ...ietieeeieeeii ettt e e e et e et e et eeeaeeean e 139
FLTK VAIUBLOS ..ottt e e et e e e et eeeaaan e 139
Other FLTK WIAGELS ...oevvvieeiiiiie et et eeeeii e e e 140
Modifying FLTK Widget APPEAranCeccuuvevviieiiiieeiiieeeiieeeiieeeiaeeeieeaaaees 140
General FLTK Widget-related OpCOTEScvvvniveiiieiii v e 141
INSErUMENt INVOCATION ...veeieie e e 141
Program FIOW CONrOlooiiiiiiiiii e 142
Real-time Performance CONtrolviiuiiiiiiiiee e 143
Initialization and REINItializationc..oiiiiiiiiiii e, 143
Sensing and CONLIOLiiieiiii e e e e e e e e eaes 143

Opcodes Overview

SEACKS vttt ettt 145
SUb-iNStrUMENt CONLIOLeiiei e 145
TIMEREAAING ...oeeii e e 145
FUNCtion Table CONIOlo.u.iiee e e e 147
TaDIE QUENTES ..eeiei e 147
Read/WIte OPEralioNSccuuueiiiiiii et ea s 147
Table Reading with Dynamic SEleCtionccccuiviiiiiiiiiiicc e, 148
MathematiCal OPEIELIONScveuuieeiiiet et e e e e e e e e e e e e e et e e e e e e eeaeeaenaees 149
AMPLITUAE CONVEITEIS ...ttt 149
Arithmetic and LOgiC OPEratioNSc.uuuivieiiieeiiiie e 149
Mathematical FUNCLIONSoiuuniiiiiiei e 149
Opcode Equivalents of FUNCLIONSoooeuiiiiiiiieec e 149
RaNAOM FUNCLIONS ..uuiiiiii e 150
TrigoONOMELIIC FUNCLIONSucvveiiiei e e e e e e e 150
(o g IO 01V 5 (= 151
FUNCLIONS ..ttt e e e e e e e 151
TUNING OPCOOES ...ttt et et a et e e e e e eanns 151
Real-time MIDI SUDPPOIT ... ettt e et e et e e e e ean e 152
Virtual MIDI Keyboardcoovuiiiiicie e 153
1 T oL 155
MIDI MESSAGE OULPULeerieeeie ettt ettt e e e e e 155
Generic INPUE 8N OULPULcoeveneieiiie et e e 156
(000]017/< £ (= £ TP 156
EVENE EXTENOEIS ...ttt ea s 156
Note-0n/NOtE-Off OQULPULvvveieiieiiieee e e e e e e e 156
MIDI/Score Interoperability OPCOUESovvvuiiiiiiiiie e 157
System RealtiMe MESSAEScovuniiiiiii et 158
S [L= g ST g PP 158
SPECEIEl PrOCESSING ... eeeniiitieei ettt ettt et e et e e e e a e e eaa e eees 160
Short-time Fourier Transform (STFT) Resynthesisccovevviiiiiiiiiecieee, 160
Linear Predictive Coding (LPC) Resynthesisccocvviiiiiiiiiiiiicciiieceeeiis 160
Non-standard Spectral ProCESSINGvvvvuieiiieiiieiir e e e e v e e e 161
Toolsfor Real-time Spectral Processing (PVS OpCOTES)vuvvvevinnieeeiineeeenen, 161
ATS SPECHral PrOCESSING ..oevvueiiiiiie ettt 162
LOMSOPCOUES ...ttt ettt e et e e et e e e e eana s 163
1 0 PP 167
String Manipulation OPCOAESccvuieiiiieiii e e e e e 168
String CoNVErSioN OPCOESvvuuieeeeeit i eeee e e e e e e e e e e e e e e aeeees 168
VECLOMAl OPCOUES ...ttt e e e e et e et et e eeeaaa s 170
Tables Of VECIOrS OPEIEIONSeieiiieeieii ettt 170
Operations Between a Vectorial and aScalar Signalc.cooeevieviiiiiiiiienne, 170
Operations Between two Vectorial Signalsoooevveiiiiiiiiiiiieee 171
Vectorial ENVElOPE GENEIAtOrSccuueiiiieiiiiiieiiee e e e e e e 172
Limiting and wrapping of vectorial control Signalscccoveviviiiiiiiiieeinns 172
Vectorial Control-rate Delay Pathscooouiiiiiiiiiiiii e 172
Vectorial Random Signal GENEIatorsSoceeevuieieiiieeieiiieeeeiie e e eeenens 172
W 1o RS V£ = o PR 174
L 0o T I 0T 1 o 175
DSSI and LADSPA fOr CSOUNoeviiiieeiiiiieeeccie e 175
VST FOF CSOUNM ...t et e e 175
105 @3- ol A\ 111 g 177
L0 S PSPPI 177
= A1 S SPP 177
REMOLE OPCOES ...ttt 177
Dt S o oo o === 178
100 1@ e o == R 179
gL 0o (1 o o 179
OFChESITA SYNEBX ..ttt ettt et e e e eees 179

Opcodes Overview

Miscellaneous opcodes

114

Signal Generators
Additive Synthesis/Resynthesis

The opcodes for additive synthesis and resynthesis are;

e adsyn

e adsynt
e adsynt2
* hsboscil

See the section Spectral processing for more information and further additive/resynthesis opcodes.

Basic Oscillators

The basic oscillator opcodes are: (note that opcodes that end with 'i* implement linear interpolation and
those that end with '3" implement cubic interpol ation)

* Ostillator Banks: oschnk

» Simpletable oscillators: oscil, oscil3 and oscili.

» Simple, fast sine oscilator: oscils

» Precision oscilators: poscil and poscil 3.

» Moreflexible oscillators: oscilikt, osciliktp, oscilikts and osciln (also called oscilx).

LFOs

* Ifo
e vibr
* vibrato

See the section Table access for other table reading opcodes that can be used as oscillators. Also see the
section Dynamic spectrum Oscillators.

Dynamic Spectrum Oscillators

The opcodes that generate dynamic spectra are:

» Harmonic spectra: buzz and gbuzz

115

Signal Generators

* Impulse generator: mpulse

» Band limited oscillators (analog modelled): vco and vco2

The following opcodes can be used to generate band-limited waveforms for use with vco2 and other os-

cillators:

e vco2init
e vCco2ft

e vCo2ift

FM Synthesis

The FM synthesis opcodes are:

o foscil

o foscili

FM instrument models

o fmb3

o fmbell

o fmmetal
o fmpercfl
» fmrhode
+ fmvoice
o fmwurlie

Granular Synthesis

The granular synthesis opcodes are:

e diskgrain
o fof

o fof2

» fog

116

Signal Generators

e grain

e grain2

e grain3

e granule

o partikkel

» partikkelsync
e sndwarp

e sndwarpst

e syncgrain

* syncloop

Hyper Vectorial Synthesis
* vphaseseg

e hvsl
e hvs2
e hvs3

The opcode FLhvsBox can be used to display the phase position for 2-dimensional Hyper Vectorial Syn-
thesis.

Linear and Exponential Generators

The opcodes that generate linear or exponential curves or segments are:

s expon

e expcurve
° exXpseg

* expsega

* expsegr

e gaindider

* jspline

117

Signal Generators

o line

* linseg

e linsegr

* logcurve
» loopseg
* loopsegp
e Ipshold

* Ipsholdp
* rspline

+ scale

e transeg

Envelope Generators

The following envel ope generators are available:

e adsr

* madsr
* mxadsr
e Xadsr

e linen

e linenr

e envipx
e envipxr

Consult the Linear and exponential generators section for additional methods to create envelopes.

Models and Emulations

The following opcodes model or emulate the sounds of other instruments (some based on the STK

toolkit by Perry Cook):
e bamboo

e barmodel

e cabasa

118

Signal Generators

* crunch

o dripwater
» gogobel

e guiro

* lorenz

* mandol

e marimba

* moog

o planet

* prepiano
» sandpaper
* sekere

» shaker

» deighbells
o dlix

e tambourine
e vibes
e voice

» Fractal Number (Mandelbrot set) generator: mandel

Phasors

The opcodes that generate a moving phase value:

e phasor

» phasorbnk

These opcodes are useful for usage with the Table access opcodes.

Random (Noise) Generators

Opcodes that generate random numbers are:

e betarnd

119

Signal Generators

* bexprnd
e cauchy

* cuserrnd
* duserrnd
» exprand
* gauss

e linrand
* noise

* pcauchy
* pinkish
* poisson
* rand

* randh

e randi

e rnd31

* random
* randomh
* randomi
e trirand
* unirand
e wurd

* weibull

o jitter

o jitter2

+ trandom

See seed which sets the global seed value for al x-class noise generators, as well as other opcodes that
use arandom call, such as grain. rand, randh, randi, rnd(x) and birnd(x) are not affected by seed.

See al so functions which generate random numbers in the section Random Functions.

Sample Playback

Opcodes that implement sample playback and looping are:

120

Signal Generators

* bbcutm

* bbcuts

» flooper
» flooper2
* loscil

* loscil3

* loscilx

* Iphasor

* |poscil

* lIposcil3
* lposcila
* Iposcilsa
» lposcilsa2
» sndloop
* waveset

See also the Sgnal Input section for other ways to input sound.

Soundfonts
Fluid Opcodes

The fluid family of opcodes wraps Peter Hannape's SoundFont 2 player, FluidSynth: fluidEngine for in-
stantiating a FluidSynth engine, fluidLoad for loading SoundFonts, fluidProgramSelect for assigning
presets from a SoundFont to a FluidSynth engine's MIDI channel, fluidNote for playing a note on a Flu-
idSynth engine's MIDI channel, fluidCCi for sending a controller message at i-time to a FluidSynth en-
gine's MIDI channel, fluidCCk for sending a controller message at k-rate to a FluidSynth engine's MIDI
channel. fluidControl for playing and controlling loaded Soundfonts (using ‘raw' MIDI messages), fluid-
Out for receiving audio from a single FluidSynth engine, and fluidAllOut for receiving audio from all
FluidSynth engines.

+ fluidAllOut
» fluidCCi
» fluidCCk

e fluidControl

» fluidEngine
+ fluidLoad
» fluidNote

121

Signal Generators

o fluidOut
o fluidProgramSelect

Old Soundfont opcodes

These opcodes can also use soundfonts to generate sound. The usage of the fluid Opcodes (above) is
highly recommended instead of these opcodes.

o dilist

o dfinstr

e sfinstr3

o Sfinstr3m
o sfinstrm
+ Sfload

» dfpassign
« dsfplay

+ dfplay3

e sfplay3m
» sfplaym
» sfplist

o Sfpreset

Scanned Synthesis

Scanned synthesisis a variant of physical modeling, where a network of masses connected by springsis
used to generate a dynamic waveform. The opcode scanu defines the mass/spring network and sets it in
motion. The opcode scans follows a predefined path (trajectory) around the network and outputs the de-
tected waveform. Several scans instances may follow different paths around the same network.

These are highly efficient mechanical modelling algorithms for both synthesis and sonic animation via
algorithmic processing. They should run in real-time. Thus, the output is useful either directly as audio,
or as controller values for other parameters.

The Csound implementation adds support for a scanning path or matrix. Essentialy, this offers the pos-
sibility of reconnecting the masses in different orders, causing the signal to propagate quite differently.
They do not necessarily need to be connected to their direct neighbors. Essentially, the matrix has the ef-
fect of “molding” this surfaceinto aradically different shape.

To produce the matrices, the table format is straightforward. For example, for 4 masses we have the fol-
lowing grid describing the possible connections:

1 2 3 4

122

Signal Generators

A W|IN| P

Whenever two masses are connected, the point they define is 1. If two masses are not connected, then
the point they define is 0. For example, a unidirectional string has the following connections: (1,2),
(2,3), (3,4). If it is bidirectional, it aso has (2,1), (3,2), (4,3)). For the unidirectional string, the matrix
appears.

o| ol OOk
O OOk N
OOl Ol W
Ol O|lOo| &~

Al WIN| P

The above table format of the connection matrix is for conceptual convenience only. The actual values
shown in te table are obtained by scans from an ASCII file using GEN23. The actual ASCII fileis cre-
ated from the table model row by row. Therefore the ASCII file for the example table shown above be-
COMES:

0100001000010000

This matrix example is very small and simple. In practice, most scanned synthesis instruments will use
many more masses than four, so their matrices will be much larger and more complex. See the example
in the scans documentation.

Please note that the generated dynamic wavetables are very unstable. Certain values for masses, center-
ing, and damping can cause the system to “blow up” and the most interesting sounds to emerge from
your loudspeakers!

The supplement to this manual contains a tutorial on scanned synthesis. The tutorial, examples, and oth-
er information on scanned synthesisis available from the Scanned Synthesis page at cSounds.com.

Scanned synthesis developed by Bill Verplank, Max Mathews and Rob Shaw at Interval Research
between 1998 and 2000.

Opcodes that implement scanned synthesis are:

e scanhammer

e scans
e scantable
e scanu

e Xscanmap
e Xscans

123

Signal Generators

s Xscansmap

e Xscanu

Table Access

The opcodes that access tables are:

* oscill
* oscilli
* osciln
* oscilx
+ table

» table3
o tablei

Opcodes ending in 'i* implement linear interpolation and opcodes ending in ‘3" implement cubic interpol-
ation.

The following opcodes implement fast table reading/writing without boundary checks:

e tab
e tabi
e tabw

e tabw i

See the sections Table Queries, Read/Write Operationsand Table Reading with Dynamic Selection for
other table operations.

Wave Terrain Synthesis

The opcode that uses wave terrain synthesisis wterrain.

Waveguide Physical Modeling

The opcodes that implement waveguide physical modeling are:

e pluck
* repluck

* wgbow

124

Signal Generators

wgbowedbar
wgbrass
wgclar
wgflute
wgpluck
wgpluck?2
wguidel

wguide2

125

Signal Input and Output
File Input and Output

The opcodes for file input and output are;

e File open/close: fiopen and ficlose.

» File output: dumpk, dumpk2, dumpk3, dumpk4, fout, fouti, foutir and foutk
e Fileinput: readk, readk2, readk3, readkd4, fin, fini and fink

» Ultilities for use with the fout opcodes: clear, vincr

e Printing to afile: fprints and fprintks

Signal Input

The opcodes that receive audio signals are:

» Synchronous input: in, in32, inch, inh, ino, ing, inrg, ins and inx
» File streaming: diskin, diskin2 and soundin

» User defined channel input: invalue

» Streaming input: soundin

» Direct to zak input: inz

See the section Software Bus for input and output through the API.

Signal Output

The opcodes that write audio signals are;

e Synchronous output: out, out32, outc, outch, outh, outo, outrg, outg, outql, outg2, outq3, outg4,
outs,outsl, outs2 and outx

» Streaming output: soundout and soundouts

» User defined channel output: outvalue

» Direct from zak output: outz

The opcode monitor can be used for monitoring the complete output of csound (the output spout frame).

See the section Software Bus for input and output through the API.

126

Signal Input and Output

Software Bus

Csound implements a software bus for internal routing or routing to external software calling the
Csound API.

The opcodes to use the software bus are:

e chn k

e chna

e chn S

» chnclear
» chnexport
* chnmix

e chnparams

Printing and Display

Opcodes for printing and displaying values are:

o dispfft
« display
o flashtxt
e print

o printf

e printf_i
o printk

e printk2
e printks
e prints

Sound File Queries

The opcodes that query information about files are:

+ filelen

* filenchnls

127

Signal Input and Output

filepeak

filesr

128

Signal Modifiers
Amplitude Modifiers and Dynamic processing

The opcodes that modify amplitude are:

+ halance
» compress
e clip

* dam

e g@ain
The opcode O0dbfs facilitates the use of amplitude by removing the need to use of explicit sample values.

Convolution and Morphing

The opcodes that convolve and morph signals are:

» convolve also called convie
e Cross2
* dconv
o ftconv
o ftmorf

* pconvolve

Delay
Fixed delays

» delay
e delayl
o deayk

Delay Lines

e delayr

129

Signal Modifiers

delayw
deltap
deltap3
deltapi
deltapn
deltapx

deltapxw

Variable delays

vdelay
vdelay3
vdelayx
vdelayxs
vdelayxq
vdelayxw

vdelayxwq
vdelayxws

Multitap delays

multitap

Panning and Spatialization

Amplitude spatialization

locsend
locsig
pan
space
spdist
spsend

130

Signal Modifiers

3D spatialization with simulation of room acoustics

spat3d
spat3di
spat3dt

Vector Base Amplitude Panning

» vbapl6

* vbapl6move
* vbap4

* vbap4dmove
* vbap8

* vbap8move
e vbaplsinit

* vbapz

» vbapzmove

Binaural spatialization

hrtfer

Ambisonics

bformdec

bformenc

Reverberation

The opcodes one can use for reverberation are:

alpass
babo

comb

131

Signal Modifiers

o freeverb

* nestedap

» nreverb (aso called reverb2)
* reverb

* reverbsc

* valpass

e vcomb

Sample Level Operators

The opcodes one may use to modify signals are:

« ak

* denorm

o diff

» downsamp
» fold

< ik

e integ

e interp

o ik

e ntrpol

e samphold
e upsamp

» vaget

* Vvaset

Signal Limiters

Opcodes that can be used to limit signals are:

o limit

* mirror

132

Signal Modifiers

wrap

Special Effects

Opcodes that generate special effects are:

distort
distortl
flanger
harmon
phaser1

phaser?2

Standard Filters

Resonant Low-pass filters

areson

* lowpass2
lowres

* lowresx
Ipf18

* moogvcf
moogladder

e reson
resonr

* resonx
resony

e resonz
rezy

» statevar
sfilter

o thvcf

133

Signal Modifiers

* viowres

* bgrez

Standard filters

» Hi-passfilters: atone, atonex
* Low-passfilters. tone, tonex
» Biquad filters: biquad and biquada.

« Butterworth filters: butterbp, butterbr, butterhp, butterlp (which are also called butbp, butbr, buthp,
butlp)

» Generd filters: clfilt

Control signal filters

» aresonk
» atonek
* lineto

* port

e portk

* resonk
* resonxk
» tlineto

e tonek

Specialized Filters
High pass filters

e dcblock
Parametric EQ

* pareq
* rbjeq

134

Signal Modifiers

. eqfil

Other filters

o nifilt

o filter2

» fofilter
e hilbert
o Ailter2

Waveguides

The opcodes that use waveguides to modify asignal are:

e streson
* wguidel
* wguide?

Comparators and Accumulators

The following opcodes perform comparison and accumulation at a-rate or k-rate:

* max
e max k
e maxabs

e maxabsaccum
* maxaccum

e min

e minabs

e minabsaccum
e minaccum

e mac

* Mmaca

135

Instrument Control
Clock Control

The opcodes to start and stop internal clocks are:

e clockoff

» clockon

These clocks count CPU time. There are 32 independent clocks available. Y ou can use the opcode read-
clock to read current values of a clock. See Time Reading for other timing opcodes.

Conditional Values

The opcodes for conditional valuesare==,>=,>,<,<=,and !=.

Duration Control Statements

The opcodes one can use to manipulate a note's duration are:

e ihold

+ turnoff
* turnoff2
* turnon

For other realtime instrument control see Real-time Performance Control and Instrument Invocation.

FLTK Widgets and GUI controllers

Widgets allow the design of a custom Graphical User Interface (GUI) to control an orchestra in real-
time. They are derived from the open-source library FLTK (Fast Light Tool Kit). This library is one of
the fastest graphic libraries available, supports OpenGL and should be source compatible with different
platforms (Windows, Linux, Unix and Mac OS). The subset of FLTK implemented in Csound provides
the following types of objects:

Containers FLTK Containers are widgets that contain other widgets such as panels, windows,
etc. Csound provides the following container objects:
e Panels
e Scroll areas
o Pack

e Tabs

136

Instrument Control

Groups

Vauators The most useful objects are named FLTK Valuators. These objects alow the user
to vary synthesis parameter values in real-time. Csound provides the following
valuator objects:

Sliders
Knobs
Rollers
Text fields
Joysticks

Counters

Other widgets There are other FTLK widgets that are not valuators nor containers:

Buttons
Button banks
Labels

Keyboard and Mouse sensing

Also there are some other opcodes useful to modify the widget appearance:

» Updating widget value.

e Setting primary and selection colors of awidget.

» Setting font type, size and color of widgets.

» Resizing awidget.

» Hiding and showing a widget.

There are also these general opcodes that allow the following actions:

Running the widget thread: FLrun

» Loading snapshots containing the status of all valuators of an orchestra: FLgetsnap and FLIoadsnap.

» Saving snapshots containing the status of all valuators of an orchestra: FLsavesnap and FLsetsnap

Setting the snapshot group of a declared valuator: FLsetShapGroup

Below is a simple example of Csound code to create a window. Notice that all opcodes are init-rate and
must be called only once per session. The best way to use them is to place them in the header section of
an orchestra, before any instrument. Even though placing them inside an instrument is not prohibited,
unpredictable results can occur if that instrument is called more than once.

137

Instrument Control

Each container is made up of a couple of opcodes:. the first indicating the start of the container block and
the last indicating the end of that container block. Some container blocks can be nested but they must
not be crossed. After defining all containers, a widget thread must be run by using the special FLrun op-
code that takes no arguments.

<CsoundSynt hesi zer >

<CsOpti ons>

; Sel ect audio/mdi flags here according to platform

; Audi o out Audio in No nessages

- odac -iadc -d ;3 RT audio 1/0

; For Non-realtinme ouput |eave only the line bel ow
-0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nstrunent s>
;*******************************
sr=48000

kr =480

ksnps=100

nchnl s=1

;*** |t is recomrended to put alnpst all GU code in the
; *** header section of an orchestra

FLpanel "Panel 1", 450,550 ;***** start of container
; some widgets should contained here
FLpanel End ;****x end of container
FLrun ;*¥**** runs the widget thread, it is always required
instr 1
; put some synthesis code here
endi n

chkkkkkkkhkhkkhkkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkkkkkk*k

</ Csl nst runent s>

<CsScor e>

f 0 3600 ;dummy table for realtine input
e

</ CsScor e>
</ CsoundSynt hesi zer >

The previous code simply creates a panel (an empty window because no widgets are defined inside the
container).

The following example creates two panels and inserts a dider inside each of them:

<CsoundSynt hesi zer >

<CsOpti ons>

Sel ect audio/m di flags here according to platform
; Audi o out Audio in No nmessages
- odac -iadc ; -d v RT audio 1/0
; For Non-realtime ouput |eave only the Iine bel ow
; -0 linseg.wav -W;;; for file output any platform
</ CsOpti ons>

<Csl nstrunent s>

chkkkkkkkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkhkkhkkkkk*k

Sr=48000
kr =480
ksnmps=100
nchnl s=1
FLpanel "Panel 1", 450, 550, 100, 100 ; ***** start of contai ner
gkl,iha FLslider "FLslider 1", 500, 1000, O ,1, -1, 300,15, 20,50
FLpanel End ;***xx end of container
FLpanel " Panel 2", 450, 550, 100, 100 ; ***** start of contai ner
gk2,ihb FLslider "FLslider 2", 100, 200, 0,1, -1, 300,15, 20,50
FLpanel End ;****xx end of container
FLrun ;¥**** runs the widget thread, it is always required

138

Instrument Control

instr 1
gkl and gk2 variables that contain the output of val uator
; Wi dgets previously defined, can be used inside any instrunent
printk2 gkl
printk2 gk2 ;print the values of the valuators whenever they change

endin
DR R R R R R R R R R R EEEEEEEEEEEEEESEESES

</ Csl nstrunent s>

<CsScor e>

f 0 3600 ;dummy table for realtine input
e

</ CsScor e>
</ CsoundSynt hesi zer >

All widget opcodes are init-rate opcodes, even if valuators output k-rate variables. This happens because
an independent thread is run based on a callback mechanism. It consumes very few processing resources
since there is no need of polling. (This differs from other MIDI based controller opcodes.) So you can
use any number of windows and valuators without degrading the real-time performance.

FLTK Containers

The opcodes for FLTK containers are:

* FLgroup

e FLgroupEnd
* FLpack

* FLpackend
* FLpand

* FLpanelEnd

* FLscrall

* FLscrollEnd
* FLtabs

* FLtabsEnd

FLTK Valuators

The opcodes for FLTK valuators are:

* FLcount
* FLjoy

* FLknob
* FLroller
o FLdider

139

Instrument Control

* FLtext

Other FLTK Widgets

Other FLTK widget opcodes are:

* FLbox

* FLbutBank

* FLbutton

* FLkeyln

* FLhvsBox

* FLhvsBoxSetVvalue
e FLmouse

e FLprintk

* FLprintk2

e FLprintk2

e FLdidBnk

» FLdidBnk2

* FLdidBnkGetHandle
* FLdidBnkSet

e FLdidBnk2Set

* FLdidBnk2Setk

* FLvalue

» FLvslidBnk

* FLvdlidBnk2

e FLxyin

Modifying FLTK Widget Appearance

The following opcodes modify FLTK widget appearance:

* FLcolor
e FLcolor2

* FLhide

140

Instrument Control

e FLlabel

e FLsetAlign

* FLsetBox

* FLsetColor

* FLsetColor2

* FLsetFont

* FLsetPosition
* FlLsetSze

* FlLsetText

* FLsetTextColor
* FlLsetTextSze
* FLsetTextType
« Flsetval i

* FLsetVal

* FLshow

General FLTK Widget-related Opcodes

The general FLTK widget-related opcodes are:

 FLgetsnap
* FLloadsnap
* FLrun

e FLsavesnap
+ FLsetsnap

* FLupdate

e FLsetShapGroup

Instrument Invocation

The opcodes one can use to create score events from within a orchestra are:

e event

141

Instrument Control

* event_i

e scoreline i
e scoreline

» schedule

» schedwhen
» schedkwhen
» schedkwhennamed

The mute opcode can be used to mute/unmute instruments during a performance.

Program Flow Control

The opcodes to manipulate which orchestra statements are executed are:

e cggoto
e cigoto
» ckgoto
* cngoto
o dsaf
+ dse

e endif
» goto

o if

e igoto
* kgoto
» tigoto
* timout

Opcodes to create looping constructions are:

» loop ge
* loop_gt
* loop le
* loop_lt

142

Instrument Control

. Warning

Some of these opcodes work at i-rate even if they contain k- or a rate comparisons. See
the Reinitialization section.

Real-time Performance Control

Opcodes that monitor and control real-time performance are;

* active

e cpuprc

* maxalloc
» prealloc

The running csound process can be terminated using exitnow.

Initialization and Reinitialization

Opcodes used for the initialization of variables:

e init
e tival
. p%t

The opcodes that can generate another initialization pass are:

e reinit
e rigoto
e rireturn

The opcode p can be used to find score p-fields at i- or k-rate.

nstrnum returns the instrument number for a named instrument.

Sensing and Control
TCL/TK widgets

e button

143

Instrument Control

checkbox
e control

setetrl

Keyboard and mouse sensing

sensekey (also called sense)

oxyin

Envelope followers

follow

follow?2

rms

Tempo and Pitch estimation

e ptrack
pitch
e pitchamdf

tempest

Tempo and Sequencing

tempo

* miditempo
tempoval

e seqgtime
segtime2

o trigger

144

Instrument Control

* trigseg

e timedseq

» changed
System

* (getcfg

Stacks

Csound implements a global stack that can be accessed with the following opcodes:

+ stack

* pop

* push

* pop_f
* push f

Sub-instrument Control

These opcodes | et one define and use a sub-instrument:

e subinstr

e subinstrinit

See also the UDO and Orchestra Macros Macros section for similar functionality.

Time Reading

Opcodes one can use to read time values are:

» readclock
» rtclock

e timeinstk
e timeinsts

145

Instrument Control

e times

e timek

Y ou can obtain the system date using:

» date - Returns the number seconds since 1 January 1970.

» dates - Returns as a string the date and time specified.

Y ou can a'so set up counters using clockoff and clockon.

146

Function Table Control

Refer to the f score statement, ftgen, ftgentmp and the GEN Routines section for information on creating
tables.

Tables can be removed from memory using the ftfree opcode.
For information on table access, consult the section Table Access.

Tables for use with the loscilx opcode can be loaded using sndload.

Table Queries

Opcodes the query tables for information are:

e For tablesloaded from a sound file (using GENO1): ftchnls, ftlen, ftlptim and ftsr

» For any table: nsamp, ftlen, tableng

Read/Write Operations

Opcodes that read and write to atabl